Redis学习笔记及面试问题分析

Redis学习笔记

一. Redis快速入门

1. 初识Redis

  • Redis是一种键值型NoSql数据库
  • 全称是Remote Dictionary Server 远程词典服务器,是一个基于内存的键值型NoSQL数据库。

特征

  • 键值(key-value)型,value支持多种不同数据结构,功能丰富
  • 单线程,每个命令具备原子性
  • 低延迟,速度快(基于内存、IO多路复用、良好的编码)。
  • 支持数据持久化
  • 支持主从集群、分片集群
  • 支持多语言客户端

2. Redis常见命令

Redis是典型的key-value数据库,key一般是字符串,而value包含很多不同的数据类型

2.1 Redis通用命令

都可以使用的指令,常见的有:

  • KEYS:查看符合模板的所有key
  • DEL:删除一个指定的key
  • EXISTS:判断key是否存在
  • EXPIRE:给一个key设置有效期,有效期到期时该key会被自动删除
  • TTL:查看一个KEY的剩余有效期

2.2 String类型

其value是字符串,不过根据字符串的格式不同,又可以分为3类:

  • string:普通字符串
  • int:整数类型,可以做自增、自减操作
  • float:浮点类型,可以做自增、自减操作

String的常见命令有

  • SET:添加或者修改已经存在的一个String类型的键值对
  • GET:根据key获取String类型的value
  • MSET:批量添加多个String类型的键值对
  • MGET:根据多个key获取多个String类型的value
  • INCR:让一个整型的key自增1
  • INCRBY:让一个整型的key自增并指定步长,例如:incrby num 2 让num值自增2
  • INCRBYFLOAT:让一个浮点类型的数字自增并指定步长
  • SETNX:添加一个String类型的键值对,前提是这个key不存在,否则不执行
  • SETEX:添加一个String类型的键值对,并且指定有效期

2.3 Key结构

通过给key添加前缀加以区分,Redis的key允许有多个单词形成层级结构,多个单词之间用’:’隔开,格式如下:

1
项目名:业务名:类型:id

例如我们的项目名称叫 heima,有user和product两种不同类型的数据,我们可以这样定义key:

  • user相关的key:heima:user:1
  • product相关的key:heima:product:1

2.4 Hash类型

Hash类型,也叫散列,其value是一个无序字典,类似于Java中的HashMap结构。

Hash的常见命令有

  • HSET key field value:添加或者修改hash类型key的field的值
  • HGET key field:获取一个hash类型key的field的值
  • HMSET:批量添加多个hash类型key的field的值
  • HMGET:批量获取多个hash类型key的field的值
  • HGETALL:获取一个hash类型的key中的所有的field和value
  • HKEYS:获取一个hash类型的key中的所有的field
  • HINCRBY:让一个hash类型key的字段值自增并指定步长
  • HSETNX:添加一个hash类型的key的field值,前提是这个field不存在,否则不执行

2.5 List类型

Redis中的List类型与Java中的LinkedList类似,可以看做是一个双向链表结构。既可以支持正向检索和也可以支持反向检索

特征也与LinkedList类似:

  • 有序
  • 元素可以重复
  • 插入和删除快
  • 查询速度一般

常用来存储一个有序数据,例如:朋友圈点赞列表,评论列表等。

List的常见命令有:

  • LPUSH key element … :向列表左侧插入一个或多个元素
  • LPOP key:移除并返回列表左侧的第一个元素,没有则返回nil
  • RPUSH key element … :向列表右侧插入一个或多个元素
  • RPOP key:移除并返回列表右侧的第一个元素
  • LRANGE key star end:返回一段角标范围内的所有元素
  • BLPOP和BRPOP:与LPOP和RPOP类似,只不过在没有元素时等待指定时间,而不是直接返回nil

2.6 Set类型

Redis的Set结构与Java中的HashSet类似,可以看做是一个value为null的HashMap

Set的常见命令有:

  • SADD key member … :向set中添加一个或多个元素
  • SREM key member … : 移除set中的指定元素
  • SCARD key: 返回set中元素的个数
  • SISMEMBER key member:判断一个元素是否存在于set中
  • SMEMBERS:获取set中的所有元素
  • SINTER key1 key2 … :求key1与key2的交集

2.7 SortedSet类型

Redis的SortedSet是一个可排序的set集合

SortedSet具备下列特性:

  • 可排序
  • 元素不重复
  • 查询速度快

因为SortedSet的可排序特性,经常被用来实现排行榜这样的功能。

SortedSet的常见命令有:

  • ZADD key score member:添加一个或多个元素到sorted set ,如果已经存在则更新其score值
  • ZREM key member:删除sorted set中的一个指定元素
  • ZSCORE key member : 获取sorted set中的指定元素的score值
  • ZRANK key member:获取sorted set 中的指定元素的排名
  • ZCARD key:获取sorted set中的元素个数
  • ZCOUNT key min max:统计score值在给定范围内的所有元素的个数
  • ZINCRBY key increment member:让sorted set中的指定元素自增,步长为指定的increment值
  • ZRANGE key min max:按照score排序后,获取指定排名范围内的元素
  • ZRANGEBYSCORE key min max:按照score排序后,获取指定score范围内的元素
  • ZDIFF、ZINTER、ZUNION:求差集、交集、并集

注意:所有的排名默认都是升序,如果要降序则在命令的Z后面添加REV即可

3. Redis的Java客户端

  • Jedis和Lettuce:这两个主要是提供了Redis命令对应的API,方便我们操作Redis,而SpringDataRedis又对这两种做了抽象和封装,因此我们后期会直接以SpringDataRedis来学习。
  • Redisson:是在Redis基础上实现了分布式的可伸缩的java数据结构,例如Map、Queue等,而且支持跨进程的同步机制:Lock、Semaphore等待,比较适合用来实现特殊的功能需求。

3.1 Jedis客户端

3.1.1 快速入门

  1. 引入依赖:
1
2
3
4
5
6
<!--jedis-->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.7.0</version>
</dependency>
  1. 建立连接
    新建一个单元测试类,内容如下:
1
2
3
4
5
6
7
8
9
10
11
12
private Jedis jedis;

@BeforeEach
void setUp() {
// 1.建立连接
// jedis = new Jedis("192.168.150.101", 6379);
jedis = JedisConnectionFactory.getJedis();
// 2.设置密码
jedis.auth("123321");
// 3.选择库
jedis.select(0);
}
  1. 测试:
1
2
3
4
5
6
7
8
9
@Test
void testString() {
// 存入数据
String result = jedis.set("name", "虎哥");
System.out.println("result = " + result);
// 获取数据
String name = jedis.get("name");
System.out.println("name = " + name);
}
  1. 释放资源
1
2
3
4
5
6
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}

3.1.2 连接池

Jedis本身是线程不安全的,并且频繁的创建和销毁连接会有性能损耗,因此我们使用Jedis连接池代替Jedis的直连方式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class JedisConnectionFactory {

private static JedisPool jedisPool;

static {
// 配置连接池
JedisPoolConfig poolConfig = new JedisPoolConfig();
poolConfig.setMaxTotal(8);
poolConfig.setMaxIdle(8);
poolConfig.setMinIdle(0);
poolConfig.setMaxWaitMillis(1000);
// 创建连接池对象,参数:连接池配置、服务端ip、服务端端口、超时时间、密码
jedisPool = new JedisPool(poolConfig, "192.168.150.101", 6379, 1000, "123321");
}

public static Jedis getJedis(){
return jedisPool.getResource();
}
}

3.2 SpringDataRedis客户端

SpringData是Spring中数据操作的模块,包含对各种数据库的集成,其中对Redis的集成模块就叫做SpringDataRedis

  • 提供了对不同Redis客户端的整合(Lettuce和Jedis)
  • 提供了RedisTemplate统一API来操作Redis
  • 支持Redis的发布订阅模型
  • 支持Redis哨兵和Redis集群
  • 支持基于Lettuce的响应式编程
  • 支持基于JDK、JSON、字符串、Spring对象的数据序列化及反序列化
  • 支持基于Redis的JDKCollection实现

SpringDataRedis中提供了RedisTemplate工具类,其中封装了各种对Redis的操作。并且将不同数据类型的操作API封装到了不同的类型中:

3.2.1 快速入门

  1. 引入依赖
1
2
3
4
5
6
7
8
9
10
<!--redis依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!--common-pool-->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
</dependency>
  1. 配置Redis
1
2
3
4
5
6
7
8
9
10
11
spring:
redis:
host: 192.168.150.101
port: 6379
password: 123321
lettuce:
pool:
max-active: 8
max-idle: 8
min-idle: 0
max-wait: 100ms
  1. 注入RedisTemplate
1
2
3
4
5
6
@SpringBootTest
class RedisStringTests {

@Autowired
private RedisTemplate redisTemplate;
}
  1. 编写测试
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@SpringBootTest
class RedisStringTests {

@Autowired
private RedisTemplate edisTemplate;

@Test
void testString() {
// 写入一条String数据
redisTemplate.opsForValue().set("name", "虎哥");
// 获取string数据
Object name = stringRedisTemplate.opsForValue().get("name");
System.out.println("name = " + name);
}
}

3.2.2 自定义序列化

RedisTemplate可以接收任意Object作为值写入Redis:
只不过写入前会把Object序列化为字节形式,默认是采用JDK序列化,得到的结果是序列化之后的字符串。可读性差,内存占用较大。

我们可以自定义RedisTemplate的序列化方式,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Configuration
public class RedisConfig {

@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory){
// 创建RedisTemplate对象
RedisTemplate<String, Object> template = new RedisTemplate<>();
// 设置连接工厂
template.setConnectionFactory(connectionFactory);
// 创建JSON序列化工具
GenericJackson2JsonRedisSerializer jsonRedisSerializer =
new GenericJackson2JsonRedisSerializer();
// 设置Key的序列化
template.setKeySerializer(RedisSerializer.string());
template.setHashKeySerializer(RedisSerializer.string());
// 设置Value的序列化
template.setValueSerializer(jsonRedisSerializer);
template.setHashValueSerializer(jsonRedisSerializer);
// 返回
return template;
}
}

3.2.3 StringRedisTemplate

为了节省内存空间,我们可以不使用JSON序列化器来处理value,而是统一使用String序列化器,要求只能存储String类型的key和value。当需要存储Java对象时,手动完成对象的序列化和反序列化。

StringRedisTemplate,它的key和value的序列化方式默认就是String方式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Autowired
private StringRedisTemplate stringRedisTemplate;
// JSON序列化工具
private static final ObjectMapper mapper = new ObjectMapper();

@Test
void testSaveUser() throws JsonProcessingException {
// 创建对象
User user = new User("虎哥", 21);
// 手动序列化
String json = mapper.writeValueAsString(user);
// 写入数据
stringRedisTemplate.opsForValue().set("user:200", json);

// 获取数据
String jsonUser = stringRedisTemplate.opsForValue().get("user:200");
// 手动反序列化
User user1 = mapper.readValue(jsonUser, User.class);
System.out.println("user1 = " + user1);
}

二. 实战篇-黑马点评

1. 短信登录

1.1 基于Session实现登录流程

发送验证码:

用户在提交手机号后,会校验手机号是否合法,如果不合法,则要求用户重新输入手机号

如果手机号合法,后台此时生成对应的验证码,同时将验证码进行保存,然后再通过短信的方式将验证码发送给用户

短信验证码登录、注册:

用户将验证码和手机号进行输入,后台从session中拿到当前验证码,然后和用户输入的验证码进行校验,如果不一致,则无法通过校验,如果一致,则后台根据手机号查询用户,如果用户不存在,则为用户创建账号信息,保存到数据库,无论是否存在,都会将用户信息保存到session中,方便后续获得当前登录信息

校验登录状态:

用户在请求时候,会从cookie中携带者JsessionId到后台,后台通过JsessionId从session中拿到用户信息,如果没有session信息,则进行拦截,如果有session信息,则将用户信息保存到threadLocal中,并且放行

1.2 实现发送短信验证码功能

  • 发送验证码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@Override
public Result sendCode(String phone, HttpSession session) {
// 1.校验手机号
if (RegexUtils.isPhoneInvalid(phone)) {
// 2.如果不符合,返回错误信息
return Result.fail("手机号格式错误!");
}
// 3.符合,生成验证码
String code = RandomUtil.randomNumbers(6);

// 4.保存验证码到 session
session.setAttribute("code",code);
// 5.发送验证码
log.debug("发送短信验证码成功,验证码:{}", code);
// 返回ok
return Result.ok();
}
  • 登录
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
@Override
public Result login(LoginFormDTO loginForm, HttpSession session) {
// 1.校验手机号
String phone = loginForm.getPhone();
if (RegexUtils.isPhoneInvalid(phone)) {
// 2.如果不符合,返回错误信息
return Result.fail("手机号格式错误!");
}
// 3.校验验证码
Object cacheCode = session.getAttribute("code");
String code = loginForm.getCode();
if(cacheCode == null || !cacheCode.toString().equals(code)){
//3.不一致,报错
return Result.fail("验证码错误");
}
//一致,根据手机号查询用户
User user = query().eq("phone", phone).one();

//5.判断用户是否存在
if(user == null){
//不存在,则创建
user = createUserWithPhone(phone);
}
//7.保存用户信息到session中
session.setAttribute("user",user);

return Result.ok();
}

1.3 实现登录拦截功能

拦截器代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class LoginInterceptor implements HandlerInterceptor {

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
//1.获取session
HttpSession session = request.getSession();
//2.获取session中的用户
Object user = session.getAttribute("user");
//3.判断用户是否存在
if(user == null){
//4.不存在,拦截,返回401状态码
response.setStatus(401);
return false;
}
//5.存在,保存用户信息到Threadlocal
UserHolder.saveUser((User)user);
//6.放行
return true;
}
}

让拦截器生效

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
@Configuration
public class MvcConfig implements WebMvcConfigurer {

@Resource
private StringRedisTemplate stringRedisTemplate;

@Override
public void addInterceptors(InterceptorRegistry registry) {
// 登录拦截器
registry.addInterceptor(new LoginInterceptor())
.excludePathPatterns(
"/shop/**",
"/voucher/**",
"/shop-type/**",
"/upload/**",
"/blog/hot",
"/user/code",
"/user/login"
).order(1);
// token刷新的拦截器
registry.addInterceptor(new RefreshTokenInterceptor(stringRedisTemplate)).addPathPatterns("/**").order(0);
}
}

1.4 隐藏用户敏感信息

我们通过浏览器观察到此时用户的全部信息都在,这样极为不靠谱,所以我们应当在返回用户信息之前,将用户的敏感信息进行隐藏,采用的核心思路就是书写一个UserDTO对象,这个UserDTO对象就没有敏感信息了,我们在返回前,将有用户敏感信息的User对象转化成没有敏感信息的UserDTO对象,那么就能够避免这个尴尬的问题了

1.5 session共享问题

session共享问题:多台Tomcat并不共享session存储空间,当请求切换到不同tomcat服务时导致数据丢失的问题

  • 每个tomcat中都有一份属于自己的session
  • 假设用户第一次访问第一台tomcat,并且把自己的信息存放到第一台服务器的session中
  • 但是第二次这个用户访问到了第二台tomcat,那么在第二台服务器上,肯定没有第一台服务器存放的session

解决方法

所以咱们后来采用的方案都是基于redis来完成,我们把session换成redisredis数据本身就是共享的,就可以避免session共享的问题了

1.6 Redis代替session的业务流程

  1. 当注册完成后,用户去登录会去校验用户提交的手机号和验证码,是否一致,如果一致,则根据手机号查询用户信息,不存在则新建。最后将用户数据保存到redis,并且生成token作为redis的key
  2. 当我们校验用户是否登录时,会去携带着token进行访问,从redis中取出token对应的value,判断是否存在这个数据,如果没有则拦截,如果存在则将其保存到ThreadLocal中,并且放行。

1.7 基于Redis实现短信登录

UserServiceImpl代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
@Override
public Result login(LoginFormDTO loginForm, HttpSession session) {
// 1.校验手机号
String phone = loginForm.getPhone();
if (RegexUtils.isPhoneInvalid(phone)) {
// 2.如果不符合,返回错误信息
return Result.fail("手机号格式错误!");
}
// 3.从redis获取验证码并校验
String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone);
String code = loginForm.getCode();
if (cacheCode == null || !cacheCode.equals(code)) {
// 不一致,报错
return Result.fail("验证码错误");
}

// 4.一致,根据手机号查询用户 select * from tb_user where phone = ?
User user = query().eq("phone", phone).one();

// 5.判断用户是否存在
if (user == null) {
// 6.不存在,创建新用户并保存
user = createUserWithPhone(phone);
}

// 7.保存用户信息到 redis中
// 7.1.随机生成token,作为登录令牌
String token = UUID.randomUUID().toString(true);
// 7.2.将User对象转为HashMap存储
UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
CopyOptions.create()
.setIgnoreNullValue(true)
.setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));
// 7.3.存储
String tokenKey = LOGIN_USER_KEY + token;
stringRedisTemplate.opsForHash().putAll(tokenKey, userMap);
// 7.4.设置token有效期
stringRedisTemplate.expire(tokenKey, LOGIN_USER_TTL, TimeUnit.MINUTES);

// 8.返回token
return Result.ok(token);
}

1.8 解决状态登录刷新问题

  • 原始拦截器确实可以使用对应路径的拦截,同时刷新登录token令牌的存活时间,但是现在这个拦截器他只是拦截需要被拦截的路径
  • 假设当前用户访问了一些不需要拦截的路径,那么这个拦截器就不会生效,所以此时令牌刷新的动作实际上就不会执行

  • 我们可以添加一个拦截器,在第一个拦截器中拦截所有的路径,把第二个拦截器做的事情放入到第一个拦截器中,同时刷新令牌,因为第一个拦截器有了threadLocal的数据,所以此时第二个拦截器只需要判断拦截器中的user对象是否存在即可,完成整体刷新功能。

RefreshTokenInterceptor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class RefreshTokenInterceptor implements HandlerInterceptor {

private StringRedisTemplate stringRedisTemplate;

public RefreshTokenInterceptor(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
// 1.获取请求头中的token
String token = request.getHeader("authorization");
if (StrUtil.isBlank(token)) {
return true;
}
// 2.基于TOKEN获取redis中的用户
String key = LOGIN_USER_KEY + token;
Map<Object, Object> userMap = stringRedisTemplate.opsForHash().entries(key);
// 3.判断用户是否存在
if (userMap.isEmpty()) {
return true;
}
// 5.将查询到的hash数据转为UserDTO
UserDTO userDTO = BeanUtil.fillBeanWithMap(userMap, new UserDTO(), false);
// 6.存在,保存用户信息到 ThreadLocal
UserHolder.saveUser(userDTO);
// 7.刷新token有效期
stringRedisTemplate.expire(key, LOGIN_USER_TTL, TimeUnit.MINUTES);
// 8.放行
return true;
}

@Override
public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {
// 移除用户
UserHolder.removeUser();
}
}

LoginInterceptor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class LoginInterceptor implements HandlerInterceptor {

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
// 1.判断是否需要拦截(ThreadLocal中是否有用户)
if (UserHolder.getUser() == null) {
// 没有,需要拦截,设置状态码
response.setStatus(401);
// 拦截
return false;
}
// 有用户,则放行
return true;
}
}

MvcConfig:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public void addInterceptors(InterceptorRegistry registry) {
// 登录拦截器
registry.addInterceptor(new LoginInterceptor())
.excludePathPatterns(
"/shop/**",
"/voucher/**",
"/shop-type/**",
"/upload/**",
"/blog/hot",
"/user/code",
"/user/login"
).order(1);
// token刷新的拦截器
registry.addInterceptor(new RefreshTokenInterceptor(stringRedisTemplate)).addPathPatterns("/**").order(0);
}

2. 商户查询缓存

2.1 什么是缓存?

缓存就是数据交换的缓冲区(称作Cache),是存贮数据的临时地方,一般读写性能较高。

  • 缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码

  • 为什么使用缓存?

    • 速度快,好用
    • 缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力
  • 但是缓存也会增加代码复杂度和运营的成本

2.2 添加商户缓存

  • 查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis

ShopServiceImpl:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Override
public Result queryById(Long id) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 3.存在,直接返回
Shop shop = JSONUtil.toBean(shopJson, Shop.class);
return Result.ok(shop);
}
// 4.不存在,根据id查询数据库
Shop shop = getById(id);
// 5.不存在,返回错误
if (shop == null) {
return Result.fail("店铺不存在!");
}
//6.存在,写入redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop));
// 7.返回
return Result.ok(shop);
}

2.3 缓存更新策略

redis会对部分数据进行更新,或者把他叫为淘汰
有以下三种更新策略:

内存淘汰 超时删除 主动更新
说明 不用自己维护,利用Redis的内存淘汰机制,当内存不足时自动淘汰部分数据。下次查询时更新缓存。 给缓存数据添加TTL时间,到期后自动删除缓存。下次查询时更新缓存。 编写业务逻辑,在修改数据库的同时,更新缓存。
一致性 一般
维护成本

业务场景:

  • 低一致性需求:使用内存淘汰机制。例如店铺类型的查询缓存
  • 高一致性需求:主动更新,并以超时剔除作为兜底方案。例如店铺详情查询的缓存

数据库和缓存不一致采用什么方案
人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

  • 删除缓存还是更新缓存?(选择删除缓存)

    • 更新缓存:每次更新数据库都更新缓存,无效写操作较多
    • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
  • 如何保证缓存与数据库的操作的同时成功或失败?

    • 单体系统,将缓存与数据库操作放在一个事务
    • 分布式系统,利用TCC等分布式事务方案
  • 先操作缓存还是先操作数据库?(先操作数据库,再删除缓存)

    • 先删除缓存,再操作数据库
    • 先操作数据库,再删除缓存

2.4 实现商铺和缓存与数据库双写一致

修改ShopController中的业务逻辑,满足下面的需求:

  • 根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间
  • 根据id修改店铺时,先修改数据库,再删除缓存

2.5 缓存穿透

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

常见的解决方案有两种:

  • 缓存空对象
    • 优点:实现简单,维护方便
    • 缺点:
      • 额外的内存消耗
      • 可能造成短期的不一致
  • 布隆过滤
    • 优点:内存占用较少,没有多余key
    • 缺点:
      • 实现复杂
      • 存在误判可能

编码解决商品查询的缓存穿透问题

  • 原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的
  • 现在的逻辑中:如果这个数据不存在,我们不会返回404
    • 而是会把这个数据写入到Redis中,并且将value设置为空
    • 当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

CacheClient:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public <R,ID> R queryWithPassThrough(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(json)) {
// 3.存在,直接返回
return JSONUtil.toBean(json, type);
}
// 判断命中的是否是空值
if (json != null) {
// 返回一个错误信息
return null;
}

// 4.不存在,根据id查询数据库
R r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
return r;
}

2.6 缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  • 给不同的Key的TTL添加随机值
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

2.7 缓存击穿

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

常见的解决方案有两种:

  • 互斥锁
  • 逻辑过期

解决方案 优点 缺点
互斥锁 - 没有额外的内存消耗
- 保证一致性
- 实现简单
- 线程需要等待,性能受影响
- 可能有死锁风险
逻辑过期 - 线程无需等待,性能较好 - 不保证一致性
- 有额外内存消耗
- 实现复杂

2.7.1 利用互斥锁解决缓存击穿问题

ShopServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public Shop queryWithMutex(Long id)  {
String key = CACHE_SHOP_KEY + id;
// 1、从redis中查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get("key");
// 2、判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 存在,直接返回
return JSONUtil.toBean(shopJson, Shop.class);
}
//判断命中的值是否是空值
if (shopJson != null) {
//返回一个错误信息
return null;
}
// 4.实现缓存重构
//4.1 获取互斥锁
String lockKey = "lock:shop:" + id;
Shop shop = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2 判断否获取成功
if(!isLock){
//4.3 失败,则休眠重试
Thread.sleep(50);
return queryWithMutex(id);
}
//4.4 成功,根据id查询数据库
shop = getById(id);
// 5.不存在,返回错误
if(shop == null){
//将空值写入redis
stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
//返回错误信息
return null;
}
//6.写入redis
stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);

}catch (Exception e){
throw new RuntimeException(e);
}
finally {
//7.释放互斥锁
unlock(lockKey);
}
return shop;
}

2.7.2 利用逻辑过期解决缓存击穿问题

修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题

ShopServiceImpl:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return shop;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
CACHE_REBUILD_EXECUTOR.submit( ()->{

try{
//重建缓存
this.saveShop2Redis(id,20L);
}catch (Exception e){
throw new RuntimeException(e);
}finally {
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return shop;
}

2.8 封装Redis工具类

基于StringRedisTemplate封装一个缓存工具类,满足下列需求:

  • 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
  • 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题
  • 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
  • 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题

封装成CacheClient类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
@Slf4j
@Component
public class CacheClient {

private final StringRedisTemplate stringRedisTemplate;

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

public CacheClient(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}

public void set(String key, Object value, Long time, TimeUnit unit) {
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
}

public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
// 设置逻辑过期
RedisData redisData = new RedisData();
redisData.setData(value);
redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
// 写入Redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
}

public <R, ID> R queryWithPassThrough(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(json)) {
// 3.存在,直接返回
return JSONUtil.toBean(json, type);
}
// 判断命中的是否是空值
if (json != null) {
// 返回一个错误信息
return null;
}

// 4.不存在,根据id查询数据库
R r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
return r;
}

public <R, ID> R queryWithLogicalExpire(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if (expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return r;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock) {
// 6.3.成功,开启独立线程,实现缓存重建
CACHE_REBUILD_EXECUTOR.submit(() -> {
try {
// 查询数据库
R newR = dbFallback.apply(id);
// 重建缓存
this.setWithLogicalExpire(key, newR, time, unit);
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
// 释放锁
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return r;
}

public <R, ID> R queryWithMutex(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 3.存在,直接返回
return JSONUtil.toBean(shopJson, type);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回一个错误信息
return null;
}

// 4.实现缓存重建
// 4.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
R r = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2.判断是否获取成功
if (!isLock) {
// 4.3.获取锁失败,休眠并重试
Thread.sleep(50);
return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
}
// 4.4.获取锁成功,根据id查询数据库
r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
// 7.释放锁
unlock(lockKey);
}
// 8.返回
return r;
}

private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
stringRedisTemplate.delete(key);
}
}

3. 优惠券秒杀

3.1 全局唯一ID

当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题:

  • id的规律性太明显
  • 受单表数据量的限制

全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:

  • 唯一性
  • 高可用
  • 高性能
  • 递增性
  • 安全性
  • 为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
    • ID的组成部分:符号位:1bit,永远为0
    • 时间戳:31bit,以秒为单位,可以使用69年
    • 序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID

Redis实现全局唯一Id

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号的位数
*/
private static final int COUNT_BITS = 32;

private StringRedisTemplate stringRedisTemplate;

public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}

public long nextId(String keyPrefix) {
// 1.生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;

// 2.生成序列号
// 2.1.获取当前日期,精确到天
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
// 2.2.自增长
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);

// 3.拼接并返回
return timestamp << COUNT_BITS | count;
}
}

3.2 添加优惠券&实现秒杀下单

每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:

实现秒杀下单

下单时需要判断两点:

  • 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
  • 库存是否充足,不足则无法下单
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//6.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 6.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2.用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);

return Result.ok(orderId);

}

3.3 库存超卖问题(多线程安全问题)

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。

3.3.1 解决方案(加锁)

悲观锁:

  • 认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行。
  • 例如Synchronized、Lock都属于悲观锁

乐观锁:

  • 认为线程安全问题不一定会发生,因此不加锁,只是在更新数据时去判断有没有其它线程对数据做了修改。
  • 如果没有修改则认为是安全的,自己才更新数据。
  • 如果已经被其它线程修改说明发生了安全问题,此时可以重试或异常

3.3.2 基于乐观锁(CAS)的解决方案

只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的。我们的乐观锁需要变一下,改成stock大于0 即可

1
2
3
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0

3.3.3 总结

超卖这样的线程安全问题,解决方案有哪些?

  • 悲观锁:添加同步锁,让线程串行执行
    • 优点:简单粗暴
    • 缺点:性能一般
  • 乐观锁:不加锁,在更新时判断是否有其它线程在修改
    • 优点:性能好
    • 缺点:存在成功率低的问题

3.4 一人一单

修改秒杀业务,要求同一个优惠券,一个用户只能下一单

1
2
3
4
5
6
7
8
Long userId = UserHolder.getUser().getId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}

为了确保线程安全,在方法上添加了一把synchronized 锁

1
public synchronized Result createVoucherOrder(Long voucherId) {}

3.5 集群环境下一人一单的并发安全问题

通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了

由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm每个JVM都有各自的锁监视器,导致不同JVM的锁在不同的锁监视器中。那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。

3.6 秒杀优化-异步秒杀

  • 我们将耗时比较短的逻辑判断放入到redis中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走完,我们直接给用户返回成功
  • 再在后台开一个线程,后台线程慢慢的去执行queue里边的消息

  1. 当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,如果set集合中没有这条数据,说明他可以下单,如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,整个过程需要保证是原子性的,我们可以使用lua来操作

  2. 当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0 ,如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。

3.7 秒杀优化-Redis完成秒杀资格判断

需求:

  1. 新增秒杀优惠券的同时,将优惠券信息保存到Redis中

  2. 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

  3. 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列

  4. 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

  5. 新增秒杀优惠券的同时,将优惠券信息保存到Redis中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
//SECKILL_STOCK_KEY 这个变量定义在RedisConstans中
//private static final String SECKILL_STOCK_KEY ="seckill:stock:"
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
  1. 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]

-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId

-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

VoucherOrderServiceImpl:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
@Override
public Result seckillVoucher(Long voucherId) {
//获取用户
Long userId = UserHolder.getUser().getId();
long orderId = redisIdWorker.nextId("order");
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(), String.valueOf(orderId)
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
//TODO 保存阻塞队列
// 3.返回订单id
return Result.ok(orderId);
}

3.8 秒杀优化-基于阻塞队列实现秒杀优化

  1. 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
  2. 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();

//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息
private class VoucherOrderHandler implements Runnable{

@Override
public void run() {
while (true){
try {
// 1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
// 2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}

private void handleVoucherOrder(VoucherOrder voucherOrder) {
//1.获取用户
Long userId = voucherOrder.getUserId();
// 2.创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
// 3.尝试获取锁
boolean isLock = redisLock.lock();
// 4.判断是否获得锁成功
if (!isLock) {
// 获取锁失败,直接返回失败或者重试
log.error("不允许重复下单!");
return;
}
try {
//注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
proxy.createVoucherOrder(voucherOrder);
} finally {
// 释放锁
redisLock.unlock();
}
}
//a
private BlockingQueue<VoucherOrder> orderTasks =new ArrayBlockingQueue<>(1024 * 1024);

@Override
public Result seckillVoucher(Long voucherId) {
Long userId = UserHolder.getUser().getId();
long orderId = redisIdWorker.nextId("order");
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(), String.valueOf(orderId)
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
VoucherOrder voucherOrder = new VoucherOrder();
// 2.3.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 2.4.用户id
voucherOrder.setUserId(userId);
// 2.5.代金券id
voucherOrder.setVoucherId(voucherId);
// 2.6.放入阻塞队列
orderTasks.add(voucherOrder);
//3.获取代理对象
proxy = (IVoucherOrderService)AopContext.currentProxy();
//4.返回订单id
return Result.ok(orderId);
}

@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
log.error("用户已经购买过了");
return ;
}

// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
log.error("库存不足");
return ;
}
save(voucherOrder);

}

小总结:

秒杀业务的优化思路是什么?

  • 先利用Redis完成库存余量、一人一单判断,完成抢单业务
  • 再将下单业务放入阻塞队列,利用独立线程异步下单
  • 基于阻塞队列的异步秒杀存在哪些问题?
    • 内存限制问题
    • 数据安全问题

4. 分布式锁

4.1 基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。
分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

  • 分布式锁需要满足的条件
    • 可见性
    • 互斥
    • 高可用
    • 高性能
    • 安全性

常见的分布式锁有三种

MySQL Redis Zookeeper
互斥 利用MySQL本身的互斥锁机制 利用setnx这样的互斥命令 利用节点的唯一性和有序性实现互斥
高可用
高性能 一般 一般
安全性 断开连接,自动释放锁 利用锁超时时间,到期释放 临时节点,断开连接自动释放

4.2 基于Redis的分布式锁

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:
    • 互斥:确保只能有一个线程获取锁
    • 非阻塞:尝试一次,成功返回true,失败返回false
1
2
# 添加锁,NX是互斥、EX是设置超时时间
SET lock thread1 NX EX 10
  • 释放锁:
    • 手动释放
    • 超时释放:获取锁时添加一个超时时间
1
2
# 释放锁,删除即可
DEL key

我们利用redis 的setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可

4.3 实现分布式锁(版本一)

  • 利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性
  • 释放锁逻辑
    • 释放锁,防止删除别人的锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = Thread.currentThread().getId()
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}

public void unlock() {
//通过del删除锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
  • 修改业务代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
      //创建锁对象(新增代码)
SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
//获取锁对象
boolean isLock = lock.tryLock(1200);
//加锁失败
if (!isLock) {
return Result.fail("不允许重复下单");
}
try {
//获取代理对象(事务)
IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
return proxy.createVoucherOrder(voucherId);
} finally {
//释放锁
lock.unlock();
}
}

4.4 Redis分布式锁误删情况

持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明

解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除

解决Redis分布式锁误删问题

需求:修改之前的分布式锁实现,满足:

  • 在获取锁时存入线程标示(可以用UUID表示)
  • 在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致
    • 如果一致则释放锁
    • 如果不一致则不释放锁

加锁

1
2
3
4
5
6
7
8
9
10
private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}

释放锁先判断,再释放

1
2
3
4
5
6
7
8
9
10
11
public void unlock() {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁中的标示
String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
// 判断标示是否一致
if(threadId.equals(id)) {
// 释放锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
}

4.5 分布式锁的原子性问题

线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的

4.6 Lua脚本解决多条命令原子性问题

Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性

Redis提供的调用函数,语法如下:

1
redis.call('命令名称', 'key', '其它参数', ...)

例如,我们要执行set name jack,则脚本是这样:

1
2
# 执行 set name jack
redis.call('set', 'name', 'jack')

例如,我们要先执行set name Rose,再执行get name,则脚本如下:

1
2
3
4
5
6
# 先执行 set name jack
redis.call('set', 'name', 'Rose')
# 再执行 get name
local name = redis.call('get', 'name')
# 返回
return name
  • 释放锁的业务流程是这样的
    1. 获取锁中的线程标示
    2. 判断是否与指定的标示(当前线程标示)一致
    3. 如果一致则释放锁(删除)
    4. 如果不一致则什么都不做

最终我们操作redis的拿锁比锁删锁的lua脚本就会变成这样

1
2
3
4
5
6
7
8
-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then
-- 一致,则删除锁
return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0

4.7 利用Java代码调用Lua脚本改造分布式锁

RedisTemplate中,可以利用execute方法去执行lua脚本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
static {
UNLOCK_SCRIPT = new DefaultRedisScript<>();
UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
UNLOCK_SCRIPT.setResultType(Long.class);
}

public void unlock() {
// 调用lua脚本
stringRedisTemplate.execute(
UNLOCK_SCRIPT,
Collections.singletonList(KEY_PREFIX + name),
ID_PREFIX + Thread.currentThread().getId());
}

4.8 基于Redis的分布式锁实现思路

  • 利用set nx ex获取锁,并设置过期时间,保存线程标示
  • 释放锁时先判断线程标示是否与自己一致,一致则删除锁
    • 特性:
      • 利用set nx满足互斥性
      • 利用set ex保证故障时锁依然能释放,避免死锁,提高安全性
      • 利用Redis集群保证高可用和高并发特性

4.9 分布式锁-redission功能介绍

基于setnx实现的分布式锁存在下面的问题:

  • 不可重入问题:同一个线程无法多次获取同一把锁
  • 不可重试:获取锁只尝试一次就返回false,没有重试机制
  • 超时释放:: 锁超时释放虽然可以避免死锁,但如果是业务执行耗时较长,也会导致锁释放,存在安全隐患
  • 主从一致性: :如果Redis提供了主从集群,主从同步存在延迟,当主宕机时,如果从并同步主中的锁数据,则会出现锁实现

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。

Redission提供了分布式锁的多种多样的功能

4.10 分布式锁-Redission快速入门

  1. 引入依赖:
1
2
3
4
5
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.6</version>
</dependency>
  1. 配置Redisson客户端:
1
2
3
4
5
6
7
8
9
10
11
12
13
@Configuration
public class RedissonConfig {

@Bean
public RedissonClient redissonClient(){
// 配置
Config config = new Config();
config.useSingleServer().setAddress("redis://192.168.150.101:6379")
.setPassword("123321");
// 创建RedissonClient对象
return Redisson.create(config);
}
}
  1. 使用Redission的分布式锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Resource
private RedissionClient redissonClient;

@Test
void testRedisson() throws Exception{
//获取锁(可重入),指定锁的名称
RLock lock = redissonClient.getLock("anyLock");
//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
//判断获取锁成功
if(isLock){
try{
System.out.println("执行业务");
}finally{
//释放锁
lock.unlock();
}

}
}

4.11 分布式锁-redission可重入锁原理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// 创建锁对象
RLock lock = redissonClient.getLock("lock");

@Test
void method1() {
boolean isLock = lock.tryLock();
if (!isLock) {
log.error("获取锁失败,1");
return;
}
try {
log.info("获取锁成功,1");
method2();
} finally {
log.info("释放锁,1");
lock.unlock();
}

void method2 () {
boolean isLock = lock.tryLock();
if (!isLock) {
log.error("获取锁失败,2");
return;
}
try {
log.info("获取锁成功,2");
} finally {
log.info("释放锁,2");
lock.unlock();
}
}
}

4.12 分布式锁-redission 锁重试和WatchDog机制

Redisson分布式锁原理:

  • 可重入:利用hash结构记录线程id和重入次数
  • 可重试:利用信号量和PubSub功能实现等待、唤醒,获取锁失败的重试机制
  • 超时续约:利用watchDog,每隔一段时间(releaseTime / 3),重置超时时间

4.13 分布式锁-redission 锁的MutiLock原理

redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,每个节点的地位都是一样的
这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。

总结

  1. 不可重入Redis分布式锁:
    • 原理:利用setnx的互斥性;利用ex避免死锁;释放锁时判断线程标示
    • 缺陷:不可重入、无法重试、锁超时失效
  2. 可重入的Redis分布式锁:
    • 原理:利用hash结构,记录线程标示和重入次数;利用watchDog延续锁时间;利用信号量控制锁重试等待
    • 缺陷:redis宕机引起锁失效问题
  3. Redisson的multiLock:
    • 原理:多个独立的Redis节点,必须在所有节点都获取重入锁,才算获取锁成功
    • 缺陷:运维成本高、实现复杂

5. Redis消息队列(实现异步秒杀)

5.1 认识消息队列

什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:

  • 消息队列:存储和管理消息,也被称为消息代理(Message Broker)
  • 生产者:发送消息到消息队列
  • 消费者:从消息队列获取消息并处理消息

Redis提供了三种不同的方式来实现消息队列:

  • list结构:基于List结构模拟消息队列
  • PubSub:基本的点对点消息模型
  • Stream:比较完善的消息队列模型

5.2 基于List实现消息队列

只能单个生产者单个消费者
消息队列(Message Queue),字面意思就是存放消息的队列。而Redis的list数据结构是一个双向链表,很容易模拟出队列效果。

  • 队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP来实现。
  • 不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。

基于List的消息队列有哪些优缺点?

  • 优点:

    • 利用Redis存储,不受限于JVM内存上限
    • 基于Redis的持久化机制,数据安全性有保证
    • 可以满足消息有序性
  • 缺点:

    • 无法避免消息丢失
    • 只支持单消费者

5.3 基于PubSub的消息队列

可以多生产多消费
PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息。

常用命令:

  • SUBSCRIBE channel [channel] :订阅一个或多个频道
  • PUBLISH channel msg :向一个频道发送消息
  • PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道

基于PubSub的消息队列有哪些优缺点?
优点:

  • 采用发布订阅模型,支持多生产、多消费

缺点:

  • 不支持数据持久化
  • 无法避免消息丢失
  • 消息堆积有上限,超出时数据丢失

5.4 基于Stream的消息队列

Stream 是 Redis 5.0 引入的一种新数据类型,可以实现一个功能非常完善的消息队列。

  1. 发送消息的命令:

  1. 读取消息的方式之一:XREAD

  1. XREAD阻塞方式,读取最新的消息:

  1. 在业务开发中,我们可以循环的调用XREAD阻塞方式来查询最新消息,从而实现持续监听队列的效果,伪代码如下

STREAM类型消息队列的XREAD命令特点:

  • 消息可回溯
  • 一个消息可以被多个消费者读取
  • 可以阻塞读取
  • 有消息漏读的风险

5.5 基于Stream的消息队列-消费者组

消费者组(Consumer Group):将多个消费者划分到一个组中,监听同一个队列。具备下列特点:

  • 消息分流
    • 队列中的消息会分流给组内的不同消费者,而不是重复消费,从而加快消息处理的速度
  • 消息标示
    • 消费者组会维护一个标示,记录最后一个被处理的消息,哪怕消费者宕机重启,还会从标示之后读取消息。确保每一个消息都会被消费
  • 消息确认
    • 消费者获取消息后,消息处于pending状态,并存入一个pending-list。当处理完成后需要通过XACK来确认消息,标记消息为已处理,才会从pending-list移除。

创建消费者组

1
XGROUP CREATE  key groupName ID [MKSTREAM]
  • key:队列名称
  • groupName:消费者组名称
  • ID:起始ID标示,$代表队列中最后一个消息,0则代表队列中第一个消息
  • MKSTREAM:队列不存在时自动创建队列

删除指定的消费者组

1
XGROUP DESTORY key groupName

给指定的消费者组添加消费者

1
XGROUP CREATECONSUMER key groupname consumername

删除消费者组中的指定消费者

1
XGROUP DELCONSUMER key groupname consumername

从消费者组读取消息

1
XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key ...] ID [ID ...]
  • group:消费组名称
  • consumer:消费者名称,如果消费者不存在,会自动创建一个消费者
  • count:本次查询的最大数量
  • BLOCK milliseconds:当没有消息时最长等待时间
  • NOACK:无需手动ACK,获取到消息后自动确认
  • STREAMS key:指定队列名称
  • ID:获取消息的起始ID:
    • “>”:从下一个未消费的消息开始
    • 其它:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始

消费者监听消息的基本思路:

STREAM类型消息队列的XREADGROUP命令特点

  • 消息可回溯
  • 可以多消费者争抢消息,加快消费速度
  • 可以阻塞读取
  • 没有消息漏读的风险
  • 有消息确认机制,保证消息至少被消费一次

对比

List PubSub Stream
消息持久化 支持 不支持 支持
阻塞读取 支持 支持 支持
消息堆积处理 受限于内存空间,可以利用多消费者加快处理 受限于消费者缓冲区 受限于队列长度,可以利用消费者组提高消费速度,减少堆积
消息确认机制 不支持 不支持 支持
消息回溯 不支持 不支持 支持

5.6 基于Redis的Stream结构作为消息队列,实现异步秒杀下单

  • 创建一个Stream类型的消息队列,名为stream.orders
  • 修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包含voucherId、userId、orderId
  • 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单

VoucherOrderServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
private class VoucherOrderHandler implements Runnable {

@Override
public void run() {
while (true) {
try {
// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有消息,继续下一次循环
continue;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
//处理异常消息
handlePendingList();
}
}
}

private void handlePendingList() {
while (true) {
try {
// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1),
StreamOffset.create("stream.orders", ReadOffset.from("0"))
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有异常消息,结束循环
break;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理pendding订单异常", e);
try{
Thread.sleep(20);
}catch(Exception e){
e.printStackTrace();
}
}
}
}
}

6. 达人探店

6.1 发布探店笔记

探店笔记类似点评网站的评价,往往是图文结合。对应的表有两个:

  • tb_blog:探店笔记表,包含笔记中的标题、文字、图片等
  • tb_blog_comments:其他用户对探店笔记的评价

6.1.1 上传接口

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
@Slf4j
@RestController
@RequestMapping("upload")
public class UploadController {

@PostMapping("blog")
public Result uploadImage(@RequestParam("file") MultipartFile image) {
try {
// 获取原始文件名称
String originalFilename = image.getOriginalFilename();
// 生成新文件名
String fileName = createNewFileName(originalFilename);
// 保存文件
image.transferTo(new File(SystemConstants.IMAGE_UPLOAD_DIR, fileName));
// 返回结果
log.debug("文件上传成功,{}", fileName);
return Result.ok(fileName);
} catch (IOException e) {
throw new RuntimeException("文件上传失败", e);
}
}

}

6.1.2 BlogController

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
@RestController
@RequestMapping("/blog")
public class BlogController {

@Resource
private IBlogService blogService;

@PostMapping
public Result saveBlog(@RequestBody Blog blog) {
//获取登录用户
UserDTO user = UserHolder.getUser();
blog.setUpdateTime(user.getId());
//保存探店博文
blogService.saveBlog(blog);
//返回id
return Result.ok(blog.getId());
}
}

6.1.3 BlogServiceImpl

实现查看发布探店笔记的接口

1
2
3
4
5
6
7
8
9
10
11
12
@Override
public Result queryBlogById(Long id) {
// 1.查询blog
Blog blog = getById(id);
if (blog == null) {
return Result.fail("笔记不存在!");
}
// 2.查询blog有关的用户
queryBlogUser(blog);

return Result.ok(blog);
}

6.2 点赞功能

需求:

  • 同一个用户只能点赞一次,再次点击则取消点赞
  • 如果当前用户已经点赞,则点赞按钮高亮显示(前端已实现,判断字段Blog类的isLike属性)
  • 为什么采用set集合:因为我们的数据是不能重复的
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
@Override
public Result likeBlog(Long id){
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
// 2.判断当前登录用户是否已经点赞
String key = BLOG_LIKED_KEY + id;
Boolean isMember = stringRedisTemplate.opsForSet().isMember(key, userId.toString());
if(BooleanUtil.isFalse(isMember)){
//3.如果未点赞,可以点赞
//3.1 数据库点赞数+1
boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
//3.2 保存用户到Redis的set集合
if(isSuccess){
stringRedisTemplate.opsForSet().add(key,userId.toString());
}
}else{
//4.如果已点赞,取消点赞
//4.1 数据库点赞数-1
boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
//4.2 把用户从Redis的set集合移除
if(isSuccess){
stringRedisTemplate.opsForSet().remove(key,userId.toString());
}
}

实现步骤:

  • 给Blog类中添加一个isLike字段,标示是否被当前用户点赞
  • 修改点赞功能,利用Redis的set集合判断是否点赞过,未点赞过则点赞数+1,已点赞过则点赞数-1
  • 修改根据id查询Blog的业务,判断当前登录用户是否点赞过,赋值给isLike字段
  • 修改分页查询Blog业务,判断当前登录用户是否点赞过,赋值给isLike字段

6.3 点赞排行榜

在探店笔记的详情页面,应该把给该笔记点赞的人显示出来,比如最早点赞的TOP5,形成点赞排行榜

之前的点赞是放到set集合,但是set集合是不能排序的,所以这个时候,咱们可以采用一个可以排序的set集合,就是咱们的sortedSet

List Set SortedSet
排序方式 按添加顺序排序 无法排序 根据score值排序
唯一性 不唯一 唯一 唯一
查找方式 按索引查找或首尾查找 根据元素查找 根据元素查找

6.3.1 BlogServiceImpl

点赞逻辑代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
@Override
public Result likeBlog(Long id) {
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
// 2.判断当前登录用户是否已经点赞
String key = BLOG_LIKED_KEY + id;
Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
if (score == null) {
// 3.如果未点赞,可以点赞
// 3.1.数据库点赞数 + 1
boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
// 3.2.保存用户到Redis的set集合 zadd key value score
if (isSuccess) {
stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());
}
} else {
// 4.如果已点赞,取消点赞
// 4.1.数据库点赞数 -1
boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
// 4.2.把用户从Redis的set集合移除
if (isSuccess) {
stringRedisTemplate.opsForZSet().remove(key, userId.toString());
}
}
return Result.ok();
}


private void isBlogLiked(Blog blog) {
// 1.获取登录用户
UserDTO user = UserHolder.getUser();
if (user == null) {
// 用户未登录,无需查询是否点赞
return;
}
Long userId = user.getId();
// 2.判断当前登录用户是否已经点赞
String key = "blog:liked:" + blog.getId();
Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
blog.setIsLike(score != null);
}

6.3.2 点赞列表查询列表

BlogController

1
2
3
4
5
@GetMapping("/likes/{id}")
public Result queryBlogLikes(@PathVariable("id") Long id) {

return blogService.queryBlogLikes(id);
}

BlogService

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Override
public Result queryBlogLikes(Long id) {
String key = BLOG_LIKED_KEY + id;
// 1.查询top5的点赞用户 zrange key 0 4
Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);
if (top5 == null || top5.isEmpty()) {
return Result.ok(Collections.emptyList());
}
// 2.解析出其中的用户id
List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());
String idStr = StrUtil.join(",", ids);
// 3.根据用户id查询用户 WHERE id IN ( 5 , 1 ) ORDER BY FIELD(id, 5, 1)
List<UserDTO> userDTOS = userService.query()
.in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list()
.stream()
.map(user -> BeanUtil.copyProperties(user, UserDTO.class))
.collect(Collectors.toList());
// 4.返回
return Result.ok(userDTOS);
}

7. 好友关注

7.1 关注和取消关注

需求:基于该表数据结构,实现两个接口:

  • 关注和取关接口
  • 判断是否关注的接口

关注是User之间的关系,是博主与粉丝的关系,数据库中有一张tb_follow表来标示

7.1.1 FollowController

1
2
3
4
5
6
7
8
9
10
//关注
@PutMapping("/{id}/{isFollow}")
public Result follow(@PathVariable("id") Long followUserId, @PathVariable("isFollow") Boolean isFollow) {
return followService.follow(followUserId, isFollow);
}
//取消关注
@GetMapping("/or/not/{id}")
public Result isFollow(@PathVariable("id") Long followUserId) {
return followService.isFollow(followUserId);
}

7.1.2 FollowService

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
//取消关注service
@Override
public Result isFollow(Long followUserId) {
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
// 2.查询是否关注 select count(*) from tb_follow where user_id = ? and follow_user_id = ?
Integer count = query().eq("user_id", userId).eq("follow_user_id", followUserId).count();
// 3.判断
return Result.ok(count > 0);
}

//关注service
@Override
public Result follow(Long followUserId, Boolean isFollow) {
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
String key = "follows:" + userId;
// 1.判断到底是关注还是取关
if (isFollow) {
// 2.关注,新增数据
Follow follow = new Follow();
follow.setUserId(userId);
follow.setFollowUserId(followUserId);
boolean isSuccess = save(follow);

} else {
// 3.取关,删除 delete from tb_follow where user_id = ? and follow_user_id = ?
remove(new QueryWrapper<Follow>()
.eq("user_id", userId).eq("follow_user_id", followUserId));

}
return Result.ok();
}

7.2 共同关注

想要去看共同关注的好友,需要首先进入到这个页面,这个页面会发起两个请求

  1. 去查询用户的详情
  2. 去查询用户的笔记

需求:利用Redis中恰当的数据结构,实现共同关注功能。在博主个人页面展示出当前用户与博主的共同关注呢。

  • 当然是使用我们之前学习过的set集合咯,在set集合中,有交集并集补集的api,我们可以把两人的关注的人分别放入到一个set集合中,然后再通过api去查看这两个set集合中的交集数据。

FollowServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
@Override
public Result follow(Long followUserId, Boolean isFollow) {
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
String key = "follows:" + userId;
// 1.判断到底是关注还是取关
if (isFollow) {
// 2.关注,新增数据
Follow follow = new Follow();
follow.setUserId(userId);
follow.setFollowUserId(followUserId);
boolean isSuccess = save(follow);
if (isSuccess) {
// 把关注用户的id,放入redis的set集合 sadd userId followerUserId
stringRedisTemplate.opsForSet().add(key, followUserId.toString());
}
} else {
// 3.取关,删除 delete from tb_follow where user_id = ? and follow_user_id = ?
boolean isSuccess = remove(new QueryWrapper<Follow>()
.eq("user_id", userId).eq("follow_user_id", followUserId));
if (isSuccess) {
// 把关注用户的id从Redis集合中移除
stringRedisTemplate.opsForSet().remove(key, followUserId.toString());
}
}
return Result.ok();
}

FollowServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
@Override
public Result followCommons(Long id) {
// 1.获取当前用户
Long userId = UserHolder.getUser().getId();
String key = "follows:" + userId;
// 2.求交集
String key2 = "follows:" + id;
Set<String> intersect = stringRedisTemplate.opsForSet().intersect(key, key2);
if (intersect == null || intersect.isEmpty()) {
// 无交集
return Result.ok(Collections.emptyList());
}
// 3.解析id集合
List<Long> ids = intersect.stream().map(Long::valueOf).collect(Collectors.toList());
// 4.查询用户
List<UserDTO> users = userService.listByIds(ids)
.stream()
.map(user -> BeanUtil.copyProperties(user, UserDTO.class))
.collect(Collectors.toList());
return Result.ok(users);
}

7.3 共同推送-Feed流实现方案

关注推送也叫做Feed流,直译为投喂。为用户持续的提供“沉浸式”的体验,通过无限下拉刷新获取新的信息

7.3.1 Feed流产品有两种常见模式

Timeline:不做内容筛选,简单的按照内容发布时间排序,常用于好友或关注。例如朋友圈

  • 优点:信息全面,不会有缺失。并且实现也相对简单
  • 缺点:信息噪音较多,用户不一定感兴趣,内容获取效率低

智能排序:利用智能算法屏蔽掉违规的、用户不感兴趣的内容。推送用户感兴趣信息来吸引用户

  • 优点:投喂用户感兴趣信息,用户粘度很高,容易沉迷
  • 缺点:如果算法不精准,可能起到反作用
    本例中的个人页面,是基于关注的好友来做Feed流,因此采用Timeline的模式。该模式的实现方案有三种:

我们本次针对好友的操作,采用的就是Timeline的方式,只需要拿到我们关注用户的信息,然后按照时间排序即可

7.3.2 Timeline的三种模式

  • 拉模式
  • 推模式
  • 推拉结合

拉模式:也叫做读扩散

推模式:也叫做写扩散。

推拉结合模式:也叫做读写混合,兼具推和拉两种模式的优点

三种模式对比

拉模式 推模式 推拉结合
写比例
读比例
用户读取延迟
实现难度 复杂 简单 很复杂
使用场景 很少使用 用户量少、没有大V 过千万的用户量,有大V

7.4 推送到粉丝收件箱

需求:

  • 修改新增探店笔记的业务,在保存blog到数据库的同时,推送到粉丝的收件箱
  • 收件箱满足可以根据时间戳排序,必须用Redis的数据结构实现
  • 查询收件箱数据时,可以实现分页查询

Feed流的滚动分页

  • Feed流中的数据会不断更新,所以数据的角标也在变化,因此不能采用传统的分页模式。

我们在保存完探店笔记后,获得到当前笔记的粉丝,然后把数据推送到粉丝的redis中去。
代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
@Override
public Result saveBlog(Blog blog) {
// 1.获取登录用户
UserDTO user = UserHolder.getUser();
blog.setUserId(user.getId());
// 2.保存探店笔记
boolean isSuccess = save(blog);
if(!isSuccess){
return Result.fail("新增笔记失败!");
}
// 3.查询笔记作者的所有粉丝 select * from tb_follow where follow_user_id = ?
List<Follow> follows = followService.query().eq("follow_user_id", user.getId()).list();
// 4.推送笔记id给所有粉丝
for (Follow follow : follows) {
// 4.1.获取粉丝id
Long userId = follow.getUserId();
// 4.2.推送
String key = FEED_KEY + userId;
stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());
}
// 5.返回id
return Result.ok(blog.getId());
}

7.5 实现关注推送页面的分页查询

需求:在个人主页的“关注”卡片中,查询并展示推送的Blog信息:

  1. 每次查询完成后,我们要分析出查询出数据的最小时间戳,这个值会作为下一次查询的条件
  2. 我们需要找到与上一次查询相同的查询个数作为偏移量,下次查询时,跳过这些查询过的数据,拿到我们需要的数据
  • 综上:我们的请求参数中就需要携带 lastId:上一次查询的最小时间戳偏移量这两个参数

7.5.1 定义出来具体的返回值实体类

1
2
3
4
5
6
@Data
public class ScrollResult {
private List<?> list;
private Long minTime;
private Integer offset;
}

7.5.2 BlogController

1
2
3
4
5
@GetMapping("/of/follow")
public Result queryBlogOfFollow(
@RequestParam("lastId") Long max, @RequestParam(value = "offset", defaultValue = "0") Integer offset){
return blogService.queryBlogOfFollow(max, offset);
}

7.5.3 BlogServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
@Override
public Result queryBlogOfFollow(Long max, Integer offset) {
// 1.获取当前用户
Long userId = UserHolder.getUser().getId();
// 2.查询收件箱 ZREVRANGEBYSCORE key Max Min LIMIT offset count
String key = FEED_KEY + userId;
Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet()
.reverseRangeByScoreWithScores(key, 0, max, offset, 2);
// 3.非空判断
if (typedTuples == null || typedTuples.isEmpty()) {
return Result.ok();
}
// 4.解析数据:blogId、minTime(时间戳)、offset
List<Long> ids = new ArrayList<>(typedTuples.size());
long minTime = 0; // 2
int os = 1; // 2
for (ZSetOperations.TypedTuple<String> tuple : typedTuples) { // 5 4 4 2 2
// 4.1.获取id
ids.add(Long.valueOf(tuple.getValue()));
// 4.2.获取分数(时间戳)
long time = tuple.getScore().longValue();
if(time == minTime){
os++;
}else{
minTime = time;
os = 1;
}
}
os = minTime == max ? os : os + offset;
// 5.根据id查询blog
String idStr = StrUtil.join(",", ids);
List<Blog> blogs = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();

for (Blog blog : blogs) {
// 5.1.查询blog有关的用户
queryBlogUser(blog);
// 5.2.查询blog是否被点赞
isBlogLiked(blog);
}

// 6.封装并返回
ScrollResult r = new ScrollResult();
r.setList(blogs);
r.setOffset(os);
r.setMinTime(minTime);

return Result.ok(r);
}

8. 附近商户

8.1 GEO数据结构

GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:

  • GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member)
  • GEODIST:计算指定的两个点之间的距离并返回
  • GEOHASH:将指定member的坐标转为hash字符串形式并返回
  • GEOPOS:返回指定member的坐标
  • GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.以后已废弃
  • GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能
  • GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key。 6.2.新功能

8.2 附近商户搜索

8.2.1 导入店铺数据到GEO

  • 我们要做的事情是:将数据库表中的数据导入到redis中去,redis中的GEO,GEO在redis中就一个menber和一个经纬度,我们把x和y轴传入到redis做的经纬度位置去,但我们不能把所有的数据都放入到menber中去,毕竟作为redis是一个内存级数据库,如果存海量数据,redis还是力不从心,所以我们在这个地方存储他的id即可。
  • 但是这个时候还有一个问题,就是在redis中并没有存储type,所以我们无法根据type来对数据进行筛选,所以我们可以按照商户类型做分组,类型相同的商户作为同一组,以typeId为key存入同一个GEO集合中即可

HmDianPingApplicationTests

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@Test
void loadShopData() {
// 1.查询店铺信息
List<Shop> list = shopService.list();
// 2.把店铺分组,按照typeId分组,typeId一致的放到一个集合
Map<Long, List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));
// 3.分批完成写入Redis
for (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {
// 3.1.获取类型id
Long typeId = entry.getKey();
String key = SHOP_GEO_KEY + typeId;
// 3.2.获取同类型的店铺的集合
List<Shop> value = entry.getValue();
List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());
// 3.3.写入redis GEOADD key 经度 纬度 member
for (Shop shop : value) {
// stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());
locations.add(new RedisGeoCommands.GeoLocation<>(
shop.getId().toString(),
new Point(shop.getX(), shop.getY())
));
}
stringRedisTemplate.opsForGeo().add(key, locations);
}
}

8.2.2 实现附近商户功能

ShopController

1
2
3
4
5
6
7
8
9
@GetMapping("/of/type")
public Result queryShopByType(
@RequestParam("typeId") Integer typeId,
@RequestParam(value = "current", defaultValue = "1") Integer current,
@RequestParam(value = "x", required = false) Double x,
@RequestParam(value = "y", required = false) Double y
) {
return shopService.queryShopByType(typeId, current, x, y);
}

ShopServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
@Override
public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
// 1.判断是否需要根据坐标查询
if (x == null || y == null) {
// 不需要坐标查询,按数据库查询
Page<Shop> page = query()
.eq("type_id", typeId)
.page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
// 返回数据
return Result.ok(page.getRecords());
}

// 2.计算分页参数
int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
int end = current * SystemConstants.DEFAULT_PAGE_SIZE;

// 3.查询redis、按照距离排序、分页。结果:shopId、distance
String key = SHOP_GEO_KEY + typeId;
GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE
.search(
key,
GeoReference.fromCoordinate(x, y),
new Distance(5000),
RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)
);
// 4.解析出id
if (results == null) {
return Result.ok(Collections.emptyList());
}
List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
if (list.size() <= from) {
// 没有下一页了,结束
return Result.ok(Collections.emptyList());
}
// 4.1.截取 from ~ end的部分
List<Long> ids = new ArrayList<>(list.size());
Map<String, Distance> distanceMap = new HashMap<>(list.size());
list.stream().skip(from).forEach(result -> {
// 4.2.获取店铺id
String shopIdStr = result.getContent().getName();
ids.add(Long.valueOf(shopIdStr));
// 4.3.获取距离
Distance distance = result.getDistance();
distanceMap.put(shopIdStr, distance);
});
// 5.根据id查询Shop
String idStr = StrUtil.join(",", ids);
List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
for (Shop shop : shops) {
shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
}
// 6.返回
return Result.ok(shops);
}

9. 用户签到

9.1 BitMap用法

我们按月来统计用户签到信息,签到记录为1,未签到则记录为0

每一个bit位对应当月的每一天,形成了映射关系。用0和1标示业务状态,这种思路就称为位图(BitMap)。这样我们就用极小的空间,来实现了大量数据的表示

BitMap的操作命令有:

  • SETBIT:向指定位置(offset)存入一个0或1
  • GETBIT :获取指定位置(offset)的bit值
  • BITCOUNT :统计BitMap中值为1的bit位的数量
  • BITFIELD :操作(查询、修改、自增)BitMap中bit数组中的指定位置(offset)的值
  • BITFIELD_RO :获取BitMap中bit数组,并以十进制形式返回
  • BITOP :将多个BitMap的结果做位运算(与 、或、异或)
  • BITPOS :查找bit数组中指定范围内第一个0或1出现的位置

9.2 实现签到功能

需求:实现签到接口,将当前用户当天签到信息保存到Redis中

9.2.1 UserController

1
2
3
4
@PostMapping("/sign")
public Result sign(){
return userService.sign();
}

9.2.2 UserServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@Override
public Result sign() {
// 1.获取当前登录用户
Long userId = UserHolder.getUser().getId();
// 2.获取日期
LocalDateTime now = LocalDateTime.now();
// 3.拼接key
String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
String key = USER_SIGN_KEY + userId + keySuffix;
// 4.获取今天是本月的第几天
int dayOfMonth = now.getDayOfMonth();
// 5.写入Redis SETBIT key offset 1
stringRedisTemplate.opsForValue().setBit(key, dayOfMonth - 1, true);
return Result.ok();
}

9.3 签到统计

需求:实现下面接口,统计当前用户截止当前时间在本月的连续签到天数

  • **问题1:**什么叫做连续签到天数?
    • 从最后一次签到开始向前统计,直到遇到第一次未签到为止,计算总的签到次数,就是连续签到天数。
  • **问题2:**如何得到本月到今天为止的所有签到数据?
    • 假设今天是10号,那么我们就可以从当前月的第一天开始,获得到当前这一天的位数,是10号,那么就是10位,去拿这段时间的数据,就能拿到所有的数据了,那么这10天里边签到了多少次呢?统计有多少个1即可。
  • 问题3:如何从后向前遍历每个bit位?
    • 我们只需要让得到的10进制数字和1做与运算就可以了,因为1只有遇见1 才是1,其他数字都是0
    • 我们把签到结果和1进行与操作,每与一次,就把签到结果向右移动一位,依次内推,我们就能完成逐个遍历的效果了。

9.3.1 UserController

1
2
3
4
@GetMapping("/sign/count")
public Result signCount(){
return userService.signCount();
}

9.3.2 UserServiceImpl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
@Override
public Result signCount() {
// 1.获取当前登录用户
Long userId = UserHolder.getUser().getId();
// 2.获取日期
LocalDateTime now = LocalDateTime.now();
// 3.拼接key
String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
String key = USER_SIGN_KEY + userId + keySuffix;
// 4.获取今天是本月的第几天
int dayOfMonth = now.getDayOfMonth();
// 5.获取本月截止今天为止的所有的签到记录,返回的是一个十进制的数字 BITFIELD sign:5:202203 GET u14 0
List<Long> result = stringRedisTemplate.opsForValue().bitField(
key,
BitFieldSubCommands.create()
.get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth)).valueAt(0)
);
if (result == null || result.isEmpty()) {
// 没有任何签到结果
return Result.ok(0);
}
Long num = result.get(0);
if (num == null || num == 0) {
return Result.ok(0);
}
// 6.循环遍历
int count = 0;
while (true) {
// 6.1.让这个数字与1做与运算,得到数字的最后一个bit位 // 判断这个bit位是否为0
if ((num & 1) == 0) {
// 如果为0,说明未签到,结束
break;
}else {
// 如果不为0,说明已签到,计数器+1
count++;
}
// 把数字右移一位,抛弃最后一个bit位,继续下一个bit位
num >>>= 1;
}
return Result.ok(count);
}

10. UV统计-HyperLogLog

首先我们搞懂两个概念:

  • UV:全称Unique Visitor,也叫独立访客量,是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站,只记录1次。
  • PV:全称Page View,也叫页面访问量或点击量,用户每访问网站的一个页面,记录1次PV,用户多次打开页面,则记录多次PV。往往用来衡量网站的流量。
  • 通常来说UV会比PV大很多,所以衡量同一个网站的访问量,我们需要综合考虑很多因素,所以我们只是单纯的把这两个值作为一个参考值
  • UV统计在服务端做会比较麻烦,因为要判断该用户是否已经统计过了,需要将统计过的用户信息保存。但是如果每个访问的用户都保存到Redis中,数据量会非常恐怖,那怎么处理呢?

HyperLogLog

  • Hyperloglog(HLL)是从Loglog算法派生的概率算法,用于确定非常大的集合的基数,而不需要存储其所有值。
  • Redis中的HLL是基于string结构实现的,单个HLL的内存永远小于16kb内存占用低的令人发指!作为代价,其测量结果是概率性的,有小于0.81%的误差。不过对于UV统计来说,这完全可以忽略。

三. Redis高级篇

1. 分布式缓存

1.1 单点Redis的问题

  • 数据丢失问题

    • Redis是内存存储,服务重启可能会丢失数据
    • 解决方案:实现Redis数据持久化
  • 并发能力问题

    • 单节点Redis并发能力虽然不错,但也无法满足如618这样的高并发场景
    • 解决方案:搭建主从集群,实现读写分离
  • 故障恢复问题

    • 如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段
    • 解决方案:利用Redis哨兵,实现健康检测和自动恢复
  • 存储能力问题

    • Redis基于内存,单节点能存储的数据量难以满足海量数据需求
    • 解决方案:搭建分片集群,利用插槽机制实现动态扩容

1.2 Redis持久化

Redis有两种持久化方案:

  • RDB持久化
  • AOF持久化

1.2.1 RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.2.1.1 RDB持久化在四种情况下会执行:
  • 执行save命令
  • 执行bgsave命令
  • Redis停机时
  • 触发RDB条件时
1.2.1.2 触发RDB条件
  • Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
1
2
3
4
# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1
save 300 10
save 60 10000
  • RDB的其它配置也可以在redis.conf文件中设置:
1
2
3
4
5
6
7
8
# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes

# RDB文件名称
dbfilename dump.rdb

# 文件保存的路径目录
dir ./

1.2.2 RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

1.2.3 RDB小结

RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,共享内存空间
  • 子进程读取内存数据并写入新的RDB文件
  • 用新RDB文件替换旧的RDB文件

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时
  • 代表60秒内至少执行1000次修改则触发RDB

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
  • fork子进程、压缩、写出RDB文件都比较耗时

1.2.4 AOF持久化

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

  • AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
1
2
3
4
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
  • AOF的命令记录的频率也可以通过redis.conf文件来配:
1
2
3
4
5
6
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

1.2.5 AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

  • Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
1
2
3
4
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb

1.2.6 RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

RDB AOF
持久化方式 定时对整个内存做快照 记录每一次执行的命令
数据完整性 不完整,两次备份之间会丢失 相对完整,取决于刷盘策略
文件大小 会有压缩,文件体积小 记录命令,文件体积很大
宕机恢复速度 很快
数据恢复优先级 低,因为数据完整性不如AOF 高,因为数据完整性更高
系统资源占用 高,大量CPU和内存消耗 低,主要是磁盘IO资源
但AOF重写时会占用大量CPU和内存资源
使用场景 可以容忍数分钟的数据丢失,追求更快的启动速度 对数据安全性要求较高常见

2. Redis主从

  • Redis主结点只写(master)
  • Redis从结点只读(slave)

2.1 搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

2.2 主从数据同步原理

2.2.1 全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点:

master如何得知salve是第一次来连接呢??
有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid

  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

  • 因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

2.2.2 增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

  • 什么是增量同步?就是只更新slave与master存在差异的部分数据

  • repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
    • slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
  • repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步。

2.2.3 主从同步优化

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

2.2.4 小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

3. Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复

3.1 哨兵的作用

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

3.2 集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

  • 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线
  • 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

3.3 选举新的master

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
  • 最后是判断slave节点的运行id大小,越小优先级越高。

3.4 如何实现故障转移

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
  • 广播:sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

3.5 小结

Sentinel的三个作用是什么?

  • 监控
  • 故障转移
  • 通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
  • 如果大多数sentinel都认为实例主观下线,则判定服务下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one
  • 然后让所有节点都执行slaveof 新master
  • 修改故障节点配置,添加slaveof 新master

3.6 RedisTemplate

在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

  1. 引入依赖
    在项目的pom文件中引入依赖:
1
2
3
4
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
  1. 配置Redis地址
    然后在配置文件application.yml中指定redis的sentinel相关信息:
1
2
3
4
5
6
7
8
spring:
redis:
sentinel:
master: mymaster
nodes:
- 192.168.150.101:27001
- 192.168.150.101:27002
- 192.168.150.101:27003
  1. 配置读写分离
    在项目的启动类中,添加一个新的bean:
1
2
3
4
@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取
  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
  • REPLICA:从slave(replica)节点读取
  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

4. Redis分片集群

4.1 分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题
  • 高并发写的问题

使用分片集群可以解决上述问题,分片集群特征:

  • 集群中有多个master,每个master保存不同数据
  • 每个master都可以有多个slave节点
  • master之间通过ping监测彼此健康状态
  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

4.2 散列插槽

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含”{}”,且“{}”中至少包含1个字符,“{}”中的部分是有效部分
  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

Redis如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例
  • 根据key的有效部分计算哈希值,对16384取余
  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

4.3 集群伸缩

redis-cli –cluster提供了很多操作集群的命令

  • 添加节点的命令:

4.4 故障转移

4.4.1 自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

  1. 首先是该实例与其它实例失去连接
  2. 然后是疑似宕机:
  3. 最后是确定下线,自动提升一个slave为新的master
  4. 当7002再次启动,就会变为一个slave节点了

4.4.2 手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。

4.5 RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

  1. 引入redis的starter依赖
  2. 配置分片集群地址
  3. 配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

1
2
3
4
5
6
7
8
9
10
spring:
redis:
cluster:
nodes:
- 192.168.150.101:7001
- 192.168.150.101:7002
- 192.168.150.101:7003
- 192.168.150.101:8001
- 192.168.150.101:8002
- 192.168.150.101:8003

5. 多级缓存

5.1 什么是多级缓存

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库

  • 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈
  • Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存
  • 访问非静态资源(ajax查询数据)时,访问服务端
  • 请求到达Nginx后,优先读取Nginx本地缓存
  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
  • 如果Redis查询未命中,则查询Tomcat
  • 请求进入Tomcat后,优先查询JVM进程缓存
  • 如果JVM进程缓存未命中,则查询数据库

多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询
  • 另一个就是在Tomcat中实现JVM进程缓存

5.2 JVM进程缓存

5.2.1 初识Caffeine

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

我们今天会利用Caffeine框架来实现JVM进程缓存

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。

  • 缓存使用的基本API:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Test
void testBasicOps() {
// 构建cache对象
Cache<String, String> cache = Caffeine.newBuilder().build();

// 存数据
cache.put("gf", "迪丽热巴");

// 取数据
String gf = cache.getIfPresent("gf");
System.out.println("gf = " + gf);

// 取数据,包含两个参数:
// 参数一:缓存的key
// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
String defaultGF = cache.get("defaultGF", key -> {
// 根据key去数据库查询数据
return "柳岩";
});
System.out.println("defaultGF = " + defaultGF);
}

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限

    1
    2
    3
    4
    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
    .maximumSize(1) // 设置缓存大小上限为 1
    .build();
  • 基于时间:设置缓存的有效时间

    1
    2
    3
    4
    5
    6
    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
    // 设置缓存有效期为 10 秒,从最后一次写入开始计时
    .expireAfterWrite(Duration.ofSeconds(10))
    .build();

  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

5.2.2 实现JVM进程缓存

利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000
定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。

在item-service的com.heima.item.config包下定义CaffeineConfig类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
package com.heima.item.config;

import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class CaffeineConfig {

@Bean
public Cache<Long, Item> itemCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}

@Bean
public Cache<Long, ItemStock> stockCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
}
ItemController

修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@RestController
@RequestMapping("item")
public class ItemController {

@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;

@Autowired
private Cache<Long, Item> itemCache;
@Autowired
private Cache<Long, ItemStock> stockCache;

// ...其它略

@GetMapping("/{id}")
public Item findById(@PathVariable("id") Long id) {
return itemCache.get(id, key -> itemService.query()
.ne("status", 3).eq("id", key)
.one()
);
}

@GetMapping("/stock/{id}")
public ItemStock findStockById(@PathVariable("id") Long id) {
return stockCache.get(id, key -> stockService.getById(key));
}
}

5.3 Lua语法入门

Nginx编程需要用到Lua语言

5.3.1 初识Lua

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。

5.3.2 变量和循环

Lua的数据类型
数据类型 描述
nil 这个最简单,只有值nil属于该类,表示一个无效值(在条件表达式中相当于false)。
boolean 包含两个值:false和true
number 表示双精度类型的实浮点数
string 字符串由一对双引号或单引号来表示
function 由 C 或 Lua 编写的函数
table Lua 中的表(table)其实是一个”关联数组”(associative arrays),数组的索引可以是数字、字符串或表类型。在 Lua 里,table 的创建是通过”构造表达式”来完成,最简单构造表达式是{},用来创建一个空表。
  • Lua提供了type()函数来判断一个变量的数据类型
变量

Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:

1
2
3
4
5
6
7
8
-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true

Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:

1
2
3
4
-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map = {name='Jack', age=21}

Lua中的数组角标是从1开始,访问的时候与Java中类似:

1
2
-- 访问数组,lua数组的角标从1开始
print(arr[1])

Lua中的table可以用key来访问:

1
2
3
-- 访问table
print(map['name'])
print(map.name)

5.3.3 循环

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。
遍历数组:

1
2
3
4
5
6
-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
print(index, value)
end

遍历普通table

1
2
3
4
5
6
-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
print(key, value)
end

5.3.4 函数

定义函数的语法:

1
2
3
4
function 函数名( argument1, argument2..., argumentn)
-- 函数体
return 返回值
end

例如,定义一个函数,用来打印数组:

1
2
3
4
5
function printArr(arr)
for index, value in ipairs(arr) do
print(value)
end
end

5.3.5 条件控制

类似Java的条件控制,例如if、else语法:

1
2
3
4
5
6
if(布尔表达式)
then
--[ 布尔表达式为 true 时执行该语句块 --]
else
--[ 布尔表达式为 false 时执行该语句块 --]
end

5.3.6 案例

需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息

1
2
3
4
5
6
7
8
function printArr(arr)
if not arr then
print('数组不能为空!')
end
for index, value in ipairs(arr) do
print(value)
end
end

6. 实现多级缓存

6.1 OpenResty

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty

OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑自定义库

6.2 OpenResty快速入门

OpenResty监听请求
OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:

  1. 添加对OpenResty的Lua模块的加载
    修改/usr/local/openresty/nginx/conf/nginx.conf文件,在其中的http下面,添加下面代码:
1
2
3
4
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
  1. 监听/api/item路径
    修改/usr/local/openresty/nginx/conf/nginx.conf文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:
1
2
3
4
5
6
location  /api/item {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}

这个监听,就类似于SpringMVC中的@GetMapping("/api/item")做路径映射。
content_by_lua_file lua/item.lua则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。

  1. 编写item.lua,返回假数据
    item.lua中,利用ngx.say()函数返回数据到Response中
1
ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

6.3 请求参数处理

要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。那么如何获取前端传递的商品参数呢?

  • OpenResty中提供了一些API用来获取不同类型的前端请求参数:
参数格式 参数示例 参数解析代码示例
路径占位符 /item/1001 –1.正则表达式匹配:
location ~ /item/(\d+) {
content_by_lua_file lua/item.lua;
}
– 2. 匹配到的参数会存入ngx.var数组中,
– 可以用角标获取
local id = ngx.var[1]
请求头 id: 1001 – 获取请求头,返回值是table类型
local headers = ngx.req.get_headers()
Get请求参数 ?id=1001 – 获取GET请求参数,返回值是table类型
local getParams = ngx.req.get_url_args()
Post表单参数 id=1001 – 读取请求体
ngx.req.read_body()
– 获取POST表单参数,返回值是table类型
local postParams = ngx.req.get_post_args()
JSON参数 {"id": 1001} – 读取请求体
ngx.req.read_body()
– 获取body中的json参数,返回值是string类型
local jsonBody = ngx.req.get_body_data()

6.4 查询Tomcat

拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息

6.4.1 发送http请求的API

nginx提供了内部API用以发送http请求:

1
2
3
4
local resp = ngx.location.capture("/path",{
method = ngx.HTTP_GET, -- 请求方式
args = {a=1,b=2}, -- get方式传参数
})

返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

6.4.2 封装HTTP查询函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M

6.4.3 实现商品查询

最后,我们修改/usr/local/openresty/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:

1
2
3
4
5
6
7
8
9
10
-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

6.4.4 CJSON工具类

OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。

  1. 引入cjson模块:
1
local cjson = require "cjson"
  1. 序列化:
1
2
3
4
5
6
local obj = {
name = 'jack',
age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)
  1. 反序列化:
1
2
3
4
local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)

6.4.5 实现Tomcat查询

下面,我们修改之前的item.lua中的业务,添加json处理功能:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')

-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)

-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

6.4.6 基于ID负载均衡

我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式

OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库
解决方案

修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。
首先,定义tomcat集群,并设置基于路径做负载均衡:

1
2
3
4
5
upstream tomcat-cluster {
hash $request_uri;
server 192.168.150.1:8081;
server 192.168.150.1:8082;
}

然后,修改对tomcat服务的反向代理,目标指向tomcat集群:

1
2
3
location /item {
proxy_pass http://tomcat-cluster;
}

6.5 Redis缓存预热

Redis缓存会面临冷启动问题:

  • 冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。
  • 缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。
  • 我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。
这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
@Component
public class RedisHandler implements InitializingBean {

@Autowired
private StringRedisTemplate redisTemplate;

@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;

private static final ObjectMapper MAPPER = new ObjectMapper();

@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}

// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
}

6.6 查询Redis缓存

当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat

修改item.lua文件,实现对Redis的查询,查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')

-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

6.7 Nginx本地缓存

OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。

  1. 开启共享字典,在nginx.conf的http下添加配置:
1
2
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
  1. 操作共享字典:
1
2
3
4
5
6
-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')

实现本地缓存查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

7. 缓存同步

我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步

7.1 数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

异步实现:基于Canal的通知

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

7.2 Canal

Canal,译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

7.3 监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。

我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {

@Autowired
private RedisHandler redisHandler;
@Autowired
private Cache<Long, Item> itemCache;

@Override
public void insert(Item item) {
// 写数据到JVM进程缓存
itemCache.put(item.getId(), item);
// 写数据到redis
redisHandler.saveItem(item);
}

@Override
public void update(Item before, Item after) {
// 写数据到JVM进程缓存
itemCache.put(after.getId(), after);
// 写数据到redis
redisHandler.saveItem(after);
}

@Override
public void delete(Item item) {
// 删除数据到JVM进程缓存
itemCache.invalidate(item.getId());
// 删除数据到redis
redisHandler.deleteItemById(item.getId());
}
}

8. 多级缓存总结

9. Redis最佳实践

9.1 Redis键值设计

9.1.1 优雅的key结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

这样设计的好处:

  • 可读性强
  • 避免key冲突
  • 方便管理
  • 更节省内存

9.1.2 拒绝BigKey

9.1.2.1 BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

推荐值:

  • 单个key的value小于10KB
  • 对于集合类型的key,建议元素数量小于1000
9.1.2.2 BigKey的危害
  • 网络阻塞
    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis阻塞
    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
  • CPU压力
    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用
9.1.2.3 如何发现BigKey
  • redis-cli –bigkeys
    • 利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
  • scan扫描
    • 自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
  • 第三方工具
    • 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
  • 网络监控
    • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
9.1.2.4 如何删除BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

  • redis 3.0 及以下版本
    • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
  • Redis 4.0以后
    • Redis在4.0后提供了异步删除的命令:unlink

9.1.3 恰当的数据类型

例1:比如存储一个User对象,我们有三种存储方式:
  1. 方式一:json字符串
  2. 方式二:字段打散
  3. 方式三:hash(推荐

例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

存在的问题:

  • hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
  • 可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题
  1. 方案一: 拆分为string类型
  2. 方案二: 拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash(推荐)

9.1.4 总结

  • Key的最佳实践
    • 固定格式:[业务名]:[数据名]:[id]
    • 足够简短:不超过44字节
    • 不包含特殊字符
  • Value的最佳实践:
    • 合理的拆分数据,拒绝BigKey
    • 选择合适数据结构
    • Hash结构的entry数量不要超过1000
    • 设置合理的超时时间

9.2 批处理优化

9.2.1 Pipeline

9.2.1.1 客户端与redis服务器是这样交互的
  1. 单个命令的执行流程
    一次命令的响应时间 = 1次往返的网络传输耗时 + 1次Redis执行命令耗时

  1. N条命令依次执行
    N次命令的响应时间 = N次往返的网络传输耗时 + N次Redis执行命令耗时

  1. N条命令批量执行
    N次命令的响应时间 = 1次往返的网络传输耗时 + N次Redis执行命令耗时

9.2.1.2 MSet

Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:

  • mset
  • hmset

利用mset批量插入10万条数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
@Test
void testMxx() {
String[] arr = new String[2000];
int j;
long b = System.currentTimeMillis();
for (int i = 1; i <= 100000; i++) {
j = (i % 1000) << 1;
arr[j] = "test:key_" + i;
arr[j + 1] = "value_" + i;
if (j == 0) {
jedis.mset(arr);
}
}
long e = System.currentTimeMillis();
System.out.println("time: " + (e - b));
}
9.2.1.3 Pipeline

MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
@Test
void testPipeline() {
// 创建管道
Pipeline pipeline = jedis.pipelined();
long b = System.currentTimeMillis();
for (int i = 1; i <= 100000; i++) {
// 放入命令到管道
pipeline.set("test:key_" + i, "value_" + i);
if (i % 1000 == 0) {
// 每放入1000条命令,批量执行
pipeline.sync();
}
}
long e = System.currentTimeMillis();
System.out.println("time: " + (e - b));
}

9.2.2 集群下的批处理

如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。

串行命令 串行slot 并行slot(推荐) hash_tag
实现思路 for循环遍历,依次执行每个命令 在客户端计算每个key的slot,将slot一致分为一组,每组都利用Pipeline批处理,串行执行各组命令 在客户端计算每个key的slot,将slot一致分为一组,每组都利用Pipeline批处理,并行执行各组命令 将所有key设置相同的hash_tag,则所有key的slot一定相同
耗时 N次网络耗时 + N次命令耗时 m次网络耗时 + N次命令耗时
(m = key的slot个数)
1次网络耗时 + N次命令耗时 1次网络耗时 + N次命令耗时
优点 实现简单 耗时较短 耗时非常短 耗时非常短、实现简单
缺点 耗时非常久 实现稍复杂 实现复杂 容易出现数据倾斜
  • 推荐使用并行slot

9.3 服务端优化

9.3.1 持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

  • 用来做缓存的Redis实例尽量不要开启持久化功能
  • 建议关闭RDB持久化功能,使用AOF持久化
  • 利用脚本定期在slave节点做RDB,实现数据备份
  • 设置合理的rewrite阈值,避免频繁的bgrewrite
  • 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
  • 部署有关建议:
    • Redis实例的物理机要预留足够内存,应对fork和rewrite
    • 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
    • 不要与CPU密集型应用部署在一起
    • 不要与高硬盘负载应用一起部署。例如:数据库、消息队列

9.3.2 慢查询优化

在Redis执行时耗时超过某个阈值的命令,称为慢查询。

  • 慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。

  • 慢查询的阈值可以通过配置指定:

    • slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000
  • 慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:

    • slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000

查看慢查询日志列表:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取n条慢查询日志
  • slowlog reset:清空慢查询列表

9.3.3 命令及安全配置

漏洞出现的核心的原因有以下几点:

  • Redis未设置密码
  • 利用了Redis的config set命令动态修改Redis配置
  • 使用了Root账号权限启动Redis

为了避免这样的漏洞,这里给出一些建议:

  • Redis一定要设置密码
  • 禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
  • bind:限制网卡,禁止外网网卡访问
  • 开启防火墙
  • 不要使用Root账户启动Redis
  • 尽量不是有默认的端口

9.3.4 内存配置

当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。

内存类型 说明
数据内存 是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题
进程内存 Redis主进程本身运行肯定需要占用内存,如代码、常量池等;这部分内存大约几兆,在大多数生产环境中与Redis数据占用的内存相比可以忽略
缓冲区内存 一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey可能导致内存溢出

内存缓冲区常见的有三种:

  • 复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb
  • AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
  • 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置

9.4 集群最佳实践

9.4.1 问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:

  • 为了保证高可用特性,这里建议将 cluster-require-full-coverage配置为false

9.4.2 问题2、集群带宽问题

集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:

  • 插槽信息
  • 集群状态信息

集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题

解决途径:

  • 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。
  • 避免在单个物理机中运行太多Redis实例
  • 配置合适的cluster-node-timeout值

9.4.3 其他问题

  • 数据倾斜问题
  • 客户端性能问题
  • 命令的集群兼容性问题
  • lua和事务问题

那我们到底是集群还是主从

  • 单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群

四. Redis原理篇

1. Redis数据结构

1.1 动态字符串SDS

我们都知道Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。
Redis构建了一种新的字符串结构,称为简单动态字符串(Simple Dynamic String),简称SDS。

  • 例如:Redis将在底层创建两个SDS,其中一个是包含“name”的SDS,另一个是包含“虎哥”的SDS。

Redis是C语言实现的,其中SDS是一个结构体,源码如下:

1
2
3
4
5
6
struct __attribute__ ((__packed__)) sdshdr8 {
    uint8_t len; /* buf已保存的字符串字节数,不包含结束标示*/
    uint8_t alloc; /* buf申请的总的字节数,不包含结束标示*/
    unsigned char flags; /* 不同SDS的头类型,用来控制SDS的头大小
    char buf[];
};

例如,一个包含字符串“name”的sds结构如下:

  • SDS之所以叫做动态字符串,是因为它具备动态扩容的能力,例如一个内容为“hi”的SDS
  • 假如我们要给SDS追加一段字符串“,Amy”,这里首先会申请新内存空间
    • 如果新字符串小于1M,则新空间为扩展后字符串长度的两倍+1;
    • 如果新字符串大于1M,则新空间为扩展后字符串长度+1M+1。称为内存预分配。

1.2 IntSet

IntSet是Redis中set集合的一种实现方式,基于整数数组来实现,并且具备长度可变、有序等特征。

1
2
3
4
5
typedef struct intset {
    uint32_t encoding; /* 编码方式,支持存放16位、32位、64位整数*/
    uint32_t length; /* 元素个数 */
    int8_t contents[]; /* 整数数组,保存集合数据*/
} intset;

其中的encoding包含三种模式,表示存储的整数大小不同:

1
2
3
4
5
/* Note that these encodings are ordered, so:
 * INTSET_ENC_INT16 < INTSET_ENC_INT32 < INTSET_ENC_INT64. */
#define INTSET_ENC_INT16 (sizeof(int16_t)) /* 2字节整数,范围类似java的short*/
#define INTSET_ENC_INT32 (sizeof(int32_t)) /* 4字节整数,范围类似java的int */
#define INTSET_ENC_INT64 (sizeof(int64_t)) /* 8字节整数,范围类似java的long */

为了方便查找,Redis会将intset中所有的整数按照升序依次保存在contents数组中,结构如图:

IntSet升级

我们向该其中添加一个数字:50000,这个数字超出了int16_t的范围,intset会自动升级编码方式到合适的大小。
以当前案例来说流程如下:

  • 升级编码为INTSET_ENC_INT32, 每个整数占4字节,并按照新的编码方式及元素个数扩容数组
  • 倒序依次将数组中的元素拷贝到扩容后的正确位置
  • 将待添加的元素放入数组末尾
  • 最后,将inset的encoding属性改为INTSET_ENC_INT32,将length属性改为4

原本:

扩容后:

总结:Intset可以看做是特殊的整数数组,具备一些特点:

  • Redis会确保Intset中的元素唯一、有序
  • 具备类型升级机制,可以节省内存空间
  • 底层采用二分查找方式来查询

1.3 Dict

我们知道Redis是一个键值型(Key-Value Pair)的数据库,我们可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的。

  • Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)

当我们向Dict添加键值对时,Redis首先根据key计算出hash值(h),然后利用 h & sizemask来计算元素应该存储到数组中的哪个索引位置

  • 我们存储k1=v1,假设k1的哈希值h =1,则1&3 =1,因此k1=v1要存储到数组角标1位置。

Dict的扩容

Dict中的HashTable就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,链表过长,则查询效率会大大降低。
Dict在每次新增键值对时都会检查负载因子(LoadFactor = used/size) ,满足以下两种情况时会触发哈希表扩容:

  • 哈希表的 LoadFactor >= 1,并且服务器没有执行 BGSAVE 或者 BGREWRITEAOF 等后台进程;
  • 哈希表的 LoadFactor > 5 ;

Dict的收缩

Dict除了扩容以外,每次删除元素时,也会对负载因子做检查,当LoadFactor < 0.1 时,会做哈希表收缩

Dict的rehash

不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的size和sizemask变化,而key的查询与sizemask有关。因此必须对哈希表中的每一个key重新计算索引,插入新的哈希表,这个过程称为rehash。过程是这样的:

  • 计算新hash表的realeSize,值取决于当前要做的是扩容还是收缩:
    • 如果是扩容,则新size为第一个大于等于dict.ht[0].used + 1的2^n
    • 如果是收缩,则新size为第一个大于等于dict.ht[0].used的2^n (不得小于4)
  • 按照新的realeSize申请内存空间,创建dictht,并赋值给dict.ht[1]
  • 设置dict.rehashidx = 0,标示开始rehash
  • 将dict.ht[0]中的每一个dictEntry都rehash到dict.ht[1]
  • 将dict.ht[1]赋值给dict.ht[0],给dict.ht[1]初始化为空哈希表,释放原来的dict.ht[0]的内存
  • 将rehashidx赋值为-1,代表rehash结束
  • 在rehash过程中,新增操作,则直接写入ht[1],查询、修改和删除则会在dict.ht[0]和dict.ht[1]依次查找并执行。这样可以确保ht[0]的数据只减不增,随着rehash最终为空

总结

Dict的结构:

  • 类似java的HashTable,底层是数组加链表来解决哈希冲突
  • Dict包含两个哈希表,ht[0]平常用,ht[1]用来rehash

Dict的伸缩:

  • 当LoadFactor大于5或者LoadFactor大于1并且没有子进程任务时,Dict扩容
  • 当LoadFactor小于0.1时,Dict收缩
  • 扩容大小为第一个大于等于used + 1的2^n
  • 收缩大小为第一个大于等于used 的2^n
  • Dict采用渐进式rehash,每次访问Dict时执行一次rehash
  • rehash时ht[0]只减不增,新增操作只在ht[1]执行,其它操作在两个哈希表

1.4 ZipList

ZipList 是一种特殊的“双端链表” ,由一系列特殊编码的连续内存块组成。可以在任意一端进行压入/弹出操作, 并且该操作的时间复杂度为 O(1)。

属性 类型 长度 用途
zlbytes uint32_t 4 字节 记录整个压缩列表占用的内存字节数
zltail uint32_t 4 字节 记录压缩列表表尾节点距离压缩列表的起始地址有多少字节,通过这个偏移量,可以确定表尾节点的地址。
zllen uint16_t 2 字节 记录了压缩列表包含的节点数量。 最大值为UINT16_MAX (65534),如果超过这个值,此处会记录为65535,但节点的真实数量需要遍历整个压缩列表才能计算得出。
entry 列表节点 不定 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。
zlend uint8_t 1 字节 特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。

ZipListEntry

ZipList 中的Entry并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用16个字节,浪费内存。而是采用了下面的结构:

  • previous_entry_length:前一节点的长度,占1个或5个字节。
    • 如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
    • 如果前一节点的长度大于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据
  • encoding:编码属性,记录content的数据类型(字符串还是整数)以及长度,占用1个、2个或5个字节
  • contents:负责保存节点的数据,可以是字符串或整数

ZipList的连锁更新问题

现在,假设我们有N个连续的、长度为250~253字节之间的entry,因此entry的previous_entry_length属性用1个字节即可表示,如图所示:

ZipList这种特殊情况下产生的连续多次空间扩展操作称之为连锁更新(Cascade Update)。新增、删除都可能导致连锁更新的发生。

总结

ZipList特性:

  • 压缩列表的可以看做一种连续内存空间的”双向链表”
  • 列表的节点之间不是通过指针连接,而是记录上一节点和本节点长度来寻址,内存占用较低
  • 如果列表数据过多,导致链表过长,可能影响查询性能
  • 增或删较大数据时有可能发生连续更新问题

1.5 QuickList

  • 问题1:ZipList虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。怎么办?

    • 答:为了缓解这个问题,我们必须限制ZipList的长度和entry大小。
  • 问题2:但是我们要存储大量数据,超出了ZipList最佳的上限该怎么办?

    • 答:我们可以创建多个ZipList来分片存储数据。
  • 问题3:数据拆分后比较分散,不方便管理和查找,这多个ZipList如何建立联系?

    • 答:Redis在3.2版本引入了新的数据结构QuickList,它是一个双端链表,只不过链表中的每个节点都是一个ZipList。
  • 为了避免QuickList中的每个ZipList中entry过多,Redis提供了一个配置项:list-max-ziplist-size来限制。

  • 除了控制ZipList的大小,QuickList还可以对节点的ZipList做压缩。通过配置项list-compress-depth来控制

QuickList的特点

  • 是一个节点为ZipList的双端链表
  • 节点采用ZipList,解决了传统链表的内存占用问题
  • 控制了ZipList大小,解决连续内存空间申请效率问题
  • 中间节点可以压缩,进一步节省了内存

1.6 SkipList

SkipList(跳表)首先是链表,但与传统链表相比有几点差异:

  • 元素按照升序排列存储
  • 节点可能包含多个指针,指针跨度不同。

SkipList的特点

  • 跳跃表是一个双向链表,每个节点都包含score和ele值
  • 节点按照score值排序,score值一样则按照ele字典排序
  • 每个节点都可以包含多层指针,层数是1到32之间的随机数
  • 不同层指针到下一个节点的跨度不同,层级越高,跨度越大
  • 增删改查效率与红黑树基本一致,实现却更简单

1.7 RedisObject

Redis中的任意数据类型的键和值都会被封装为一个RedisObject,也叫做Redis对象

1.8 Redis基本数据类型-String

String是Redis中最常见的数据存储类型:

  • 其基本编码方式是RAW,基于简单动态字符串(SDS)实现,存储上限为512mb。
  • 如果存储的SDS长度小于44字节,则会采用EMBSTR编码,此时object head与SDS是一段连续空间。申请内存时只需要调用一次内存分配函数,效率更高。
  • 如果存储的字符串是整数值,并且大小在LONG_MAX范围内,则会采用INT编码:直接将数据保存在RedisObject的ptr指针位置(刚好8字节),不再需要SDS了。

1.9 Redis基本数据类型-List

Redis的List类型可以从首、尾操作列表中的元素:

  • 在3.2版本之前,Redis采用ZipList和LinkedList来实现List,当元素数量小于512并且元素大小小于64字节时采用ZipList编码,超过则采用LinkedList编码。
  • 在3.2版本之后,Redis统一采用QuickList来实现List

  • LinkedList :普通链表,可以从双端访问,内存占用较高,内存碎片较多
  • ZipList :压缩列表,可以从双端访问,内存占用低,存储上限低
  • QuickList:LinkedList + ZipList,可以从双端访问,内存占用较低,包含多个ZipList,存储上限高

1.10 Redis基本数据类型-Set

Set是Redis中的单列集合,满足下列特点:

  • 不保证有序性
  • 保证元素唯一
  • 求交集、并集、差集

什么样的数据结构可以满足?

  • HashTable,也就是Redis中的Dict,不过Dict是双列集合(可以存键、值对)

Set是Redis中的集合,不一定确保元素有序,可以满足元素唯一、查询效率要求极高。

  • 为了查询效率和唯一性,set采用HT编码(Dict)。Dict中的key用来存储元素,value统一为null。
  • 当存储的所有数据都是整数,并且元素数量不超过set-max-intset-entries时,Set会采用IntSet编码,以节省内存

1.11 Redis基本数据类型-ZSet

ZSet也就是SortedSet,其中每一个元素都需要指定一个score值和member值:

  • 可以根据score值排序后
  • member必须唯一
  • 可以根据member查询分数

因此,zset底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。之前学习的哪种编码结构可以满足?

  • SkipList:可以排序,并且可以同时存储score和ele值(member)
  • HT(Dict):可以键值存储,并且可以根据key找value

当元素数量不多时,HT和SkipList的优势不明显,而且更耗内存。因此zset还会采用ZipList结构来节省内存,不过需要同时满足两个条件:

  • 元素数量小于zset_max_ziplist_entries,默认值128
  • 每个元素都小于zset_max_ziplist_value字节,默认值64

ziplist本身没有排序功能,而且没有键值对的概念,因此需要有zset通过编码实现:

  • ZipList是连续内存,因此score和element是紧挨在一起的两个entry, element在前,score在后
  • score越小越接近队首,score越大越接近队尾,按照score值升序排列

1.12 Redis基本数据类型-Hash

Hash结构与Redis中的Zset非常类似:

  • 都是键值存储
  • 都需求根据键获取值
  • 键必须唯一

区别如下:

  • zset的键是member,值是score;hash的键和值都是任意值
  • zset要根据score排序;hash则无需排序

因此,Hash底层采用的编码与Zset也基本一致,只需要把排序有关的SkipList去掉即可

  • Hash结构默认采用ZipList编码,用以节省内存。 ZipList中相邻的两个entry 分别保存field和value
  • 当数据量较大时,Hash结构会转为HT编码,也就是Dict,触发条件有两个:
    • ZipList中的元素数量超过了hash-max-ziplist-entries(默认512)
    • ZipList中的任意entry大小超过了hash-max-ziplist-value(默认64字节)

2. Redis网络模型

2.1 用户空间和内核态空间

用户的应用,比如redis,mysql等其实是没有办法去执行访问我们操作系统的硬件的,所以我们可以通过发行版的这个壳子去访问内核,再通过内核去访问计算机硬件
计算机硬件包括,如cpu,内存,网卡等等,内核(通过寻址空间)可以操作硬件的,但是内核需要不同设备的驱动,有了这些驱动之后,内核就可以去对计算机硬件去进行 内存管理,文件系统的管理,进程的管理等等

为了避免用户应用导致冲突甚至内核崩溃,用户应用与内核是分离的:

  • 进程的寻址空间划分成两部分:内核空间、用户空间
  • 用户空间只能执行受限的命令(Ring3),而且不能直接调用系统资源,必须通过内核提供的接口来访
  • 内核空间可以执行特权命令(Ring0),调用一切系统资源

Linux系统为了提高IO效率,会在用户空间和内核空间都加入缓冲区:

  • 写数据时,要把用户缓冲数据拷贝到内核缓冲区,然后写入设备
  • 读数据时,要从设备读取数据到内核缓冲区,然后拷贝到用户缓冲区

2.2 阻塞IO

总结归纳了5种IO模型:

  • 阻塞IO(Blocking IO)
  • 非阻塞IO(Nonblocking IO)
  • IO多路复用(IO Multiplexing)
  • 信号驱动IO(Signal Driven IO)
  • 异步IO(Asynchronous IO)

用户去读取数据时,会去先发起recvform一个命令,去尝试从内核上加载数据,如果内核没有数据,那么用户就会等待,此时内核会去从硬件上读取数据,内核读取数据之后,会把数据拷贝到用户态,并且返回ok,整个过程,都是阻塞等待的,这就是阻塞IO
顾名思义,阻塞IO就是两个阶段都必须阻塞等待,具体流程如下图:

阶段一:

  • 用户进程尝试读取数据(比如网卡数据)
  • 此时数据尚未到达,内核需要等待数据
  • 此时用户进程也处于阻塞状态

阶段二:

  • 数据到达并拷贝到内核缓冲区,代表已就绪
  • 将内核数据拷贝到用户缓冲区
  • 拷贝过程中,用户进程依然阻塞等待
  • 拷贝完成,用户进程解除阻塞,处理数据

可以看到,阻塞IO模型中,用户进程在两个阶段都是阻塞状态

2.3 非阻塞IO

顾名思义,非阻塞IO的recvfrom操作会立即返回结果而不是阻塞用户进程。

阶段一:

  • 用户进程尝试读取数据(比如网卡数据)
  • 此时数据尚未到达,内核需要等待数据
  • 返回异常给用户进程
  • 用户进程拿到error后,再次尝试读取
  • 循环往复,直到数据就绪

阶段二:

  • 将内核数据拷贝到用户缓冲区
  • 拷贝过程中,用户进程依然阻塞等待
  • 拷贝完成,用户进程解除阻塞,处理数据
  • 可以看到,非阻塞IO模型中,用户进程在第一个阶段是非阻塞,第二个阶段是阻塞状态。虽然是非阻塞,但性能并没有得到提高。而且忙等机制会导致CPU空转,CPU使用率暴增。

2.4 IO多路复用

无论是阻塞IO还是非阻塞IO,用户应用在一阶段都需要调用recvfrom来获取数据,差别在于无数据时的处理方案:

  • 如果调用recvfrom时,恰好没有数据,阻塞IO会使CPU阻塞,非阻塞IO使CPU空转,都不能充分发挥CPU的作用。

  • 如果调用recvfrom时,恰好有数据,则用户进程可以直接进入第二阶段,读取并处理数据
    而在单线程情况下,只能依次处理IO事件,如果正在处理的IO事件恰好未就绪(数据不可读或不可写),线程就会被阻塞,所有IO事件都必须等待,性能自然会很差。

  • 文件描述符(File Descriptor):简称FD,是一个从0 开始的无符号整数,用来关联Linux中的一个文件。在Linux中,一切皆文件,例如常规文件、视频、硬件设备等,当然也包括网络套接字(Socket)。

  • IO多路复用:是利用单个线程来同时监听多个FD,并在某个FD可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。

阶段一:

  • 用户进程调用select,指定要监听的FD集合
  • 核监听FD对应的多个socket
  • 任意一个或多个socket数据就绪则返回readable
  • 此过程中用户进程阻塞

阶段二:

  • 用户进程找到就绪的socket
  • 依次调用recvfrom读取数据
  • 内核将数据拷贝到用户空间
  • 用户进程处理数据

IO多路复用常见方式的有:

  • select

  • poll

  • epoll

  • 其中select和pool相当于是当被监听的数据准备好之后,他会把你监听的FD整个数据都发给你,你需要到整个FD中去找,哪些是处理好了的,需要通过遍历的方式,所以性能也并不是那么好

  • 而epoll,则相当于内核准备好了之后,他会把准备好的数据,直接发给你,咱们就省去了遍历的动作。

2.5 IO多路复用的三种方式

2.5.1 select方式

select模式存在的问题:

  • 需要将整个fd_set从用户空间拷贝到内核空间,select结束还要再次拷贝回用户空间
  • select无法得知具体是哪个fd就绪,需要遍历整个fd_set
  • fd_set监听的fd数量不能超过1024

2.5.2 poll模式

poll模式对select模式做了简单改进,但性能提升不明显

IO流程:

  • 创建pollfd数组,向其中添加关注的fd信息,数组大小自定义
  • 调用poll函数,将pollfd数组拷贝到内核空间,转链表存储,无上限
  • 内核遍历fd,判断是否就绪
  • 数据就绪或超时后,拷贝pollfd数组到用户空间,返回就绪fd数量n
  • 用户进程判断n是否大于0,大于0则遍历pollfd数组,找到就绪的fd

与select对比:

  • select模式中的fd_set大小固定为1024,而pollfd在内核中采用链表,理论上无上限
  • 监听FD越多,每次遍历消耗时间也越久,性能反而会下降

2.5.3 epoll函数

epoll模式是对select和poll的改进,它提供了三个函数:

  1. 红黑树-> 记录的事要监听的FD
  2. 一个是链表->一个链表,记录的是就绪的FD
  • 紧接着调用epoll_ctl操作,将要监听的数据添加到红黑树上去,并且给每个fd设置一个监听函数,这个函数会在fd数据就绪时触发,就是准备好了,现在就把fd把数据添加到list_head中去
  1. 调用epoll_wait函数
  • 就去等待,在用户态创建一个空的events数组,当就绪之后,我们的回调函数会把数据添加到list_head中去,当调用这个函数的时候,会去检查list_head,当然这个过程需要参考配置的等待时间,可以等一定时间,也可以一直等, 如果在此过程中,检查到了list_head中有数据会将数据添加到链表中,此时将数据放入到events数组中,并且返回对应的操作的数量,用户态的此时收到响应后,从events中拿到对应准备好的数据的节点,再去调用方法去拿数据。

2.5.4 总结

select模式存在的三个问题:

  • 能监听的FD最大不超过1024
  • 每次select都需要把所有要监听的FD都拷贝到内核空间
  • 每次都要遍历所有FD来判断就绪状态

poll模式的问题:

  • poll利用链表解决了select中监听FD上限的问题,但依然要遍历所有FD,如果监听较多,性能会下降

epoll模式中如何解决这些问题的?

  • 基于epoll实例中的红黑树保存要监听的FD,理论上无上限,而且增删改查效率都非常高
  • 每个FD只需要执行一次epoll_ctl添加到红黑树,以后每次epol_wait无需传递任何参数,无需重复拷贝FD到内核空间
  • 利用ep_poll_callback机制来监听FD状态,无需遍历所有FD,因此性能不会随监听的FD数量增多而下降

2.6 IO多路复用-epoll

2.6.1 时间通知机制

当FD有数据可读时,我们调用epoll_wait(或者select、poll)可以得到通知。但是事件通知的模式有两种:

  • LevelTriggered:简称LT,也叫做水平触发。只要某个FD中有数据可读,每次调用epoll_wait都会得到通知。
  • EdgeTriggered:简称ET,也叫做边沿触发。只有在某个FD有状态变化时,调用epoll_wait才会被通知。

2.6.2 基于epoll的服务器端流程

基于epoll模式的web服务的基本流程如图:

2.7 信号驱动IO

信号驱动IO是与内核建立SIGIO的信号关联并设置回调,当内核有FD就绪时,会发出SIGIO信号通知用户,期间用户应用可以执行其它业务,无需阻塞等待。

阶段一:

  • 用户进程调用sigaction,注册信号处理函数
  • 内核返回成功,开始监听FD
  • 用户进程不阻塞等待,可以执行其它业务
  • 当内核数据就绪后,回调用户进程的SIGIO处理函数

阶段二:

  • 收到SIGIO回调信号
  • 调用recvfrom,读取
  • 内核将数据拷贝到用户空间
  • 用户进程处理数据

  • 缺点:当有大量IO操作时,信号较多,SIGIO处理函数不能及时处理可能导致信号队列溢出,而且内核空间与用户空间的频繁信号交互性能也较低。

2.8 异步IO

异步IO的整个过程都是非阻塞的,用户进程调用完异步API后就可以去做其它事情,内核等待数据就绪并拷贝到用户空间后才会递交信号,通知用户进程。

  • 异步IO模型中,用户进程在两个阶段都是非阻塞状态。

2.9 五种IO模型对比

2.10 Redis网络模型

2.10.1 Redis是单线程的吗?为什么使用单线程

Redis到底是单线程还是多线程?

  • 如果仅仅聊Redis的核心业务部分(命令处理),答案是单线程
  • 如果是聊整个Redis,那么答案就是多线程

在Redis版本迭代过程中,在两个重要的时间节点上引入了多线程的支持:

  • Redis v4.0:引入多线程异步处理一些耗时较旧的任务,例如异步删除命令unlink
  • Redis v6.0:在核心网络模型中引入 多线程,进一步提高对于多核CPU的利用率

为什么Redis要选择单线程?

  • 抛开持久化不谈,Redis是纯 内存操作,执行速度非常快,它的性能瓶颈是网络延迟而不是执行速度,因此多线程并不会带来巨大的性能提升。
  • 多线程会导致过多的上下文切换,带来不必要的开销
  • 引入多线程会面临线程安全问题,必然要引入线程锁这样的安全手段,实现复杂度增高,而且性能也会大打折扣

2.10.2 Redis单线程和多线程网络模型变更

Redis通过IO多路复用来提高网络性能,并且支持各种不同的多路复用实现,并且将这些实现进行封装, 提供了统一的高性能事件库API库 AE
Redis 6.0版本中引入了多线程,目的是为了提高IO读写效率。因此在解析客户端命令、写响应结果时采用了多线程。核心的命令执行、IO多路复用模块依然是由主线程执行。

3. 通信协议

3.1 RESP协议

Redis是一个CS架构的软件,通信一般分两步:

  • 客户端(client)向服务端(server)发送一条命令
  • 服务端解析并执行命令,返回响应结果给客户端

因此客户端发送命令的格式、服务端响应结果的格式必须有一个规范,这个规范就是通信协议。

  • 而在Redis中采用的是RESP(Redis Serialization Protocol)协议:

RESP协议的数据类型

在RESP中,通过首字节的字符来区分不同数据类型,常用的数据类型包括5种:

  1. 单行字符串:首字节是 ‘+’ ,后面跟上单行字符串,以CRLF( “\r\n” )结尾。例如返回”OK”: “+OK\r\n”
  2. 错误(Errors):首字节是 ‘-’ ,与单行字符串格式一样,只是字符串是异常信息,例如:”-Error message\r\n”
  3. 数值:首字节是 ‘:’ ,后面跟上数字格式的字符串,以CRLF结尾。例如:”:10\r\n”
  4. 多行字符串:首字节是 ‘$’ ,表示二进制安全的字符串,最大支持512MB:
    • 如果大小为0,则代表空字符串:”$0\r\n\r\n”
    • 如果大小为-1,则代表不存在:”$-1\r\n”
  5. 数组:首字节是 ‘*’,后面跟上数组元素个数,再跟上元素,元素数据类型不限:

3.2 基于Socket自定义Redis的客户端

Redis支持TCP通信,因此我们可以使用Socket来模拟客户端,与Redis服务端建立连接:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
public class Main {

static Socket s;
static PrintWriter writer;
static BufferedReader reader;

public static void main(String[] args) {
try {
// 1.建立连接
String host = "192.168.150.101";
int port = 6379;
s = new Socket(host, port);
// 2.获取输出流、输入流
writer = new PrintWriter(new OutputStreamWriter(s.getOutputStream(), StandardCharsets.UTF_8));
reader = new BufferedReader(new InputStreamReader(s.getInputStream(), StandardCharsets.UTF_8));

// 3.发出请求
// 3.1.获取授权 auth 123321
sendRequest("auth", "123321");
Object obj = handleResponse();
System.out.println("obj = " + obj);

// 3.2.set name 虎哥
sendRequest("set", "name", "虎哥");
// 4.解析响应
obj = handleResponse();
System.out.println("obj = " + obj);

// 3.2.set name 虎哥
sendRequest("get", "name");
// 4.解析响应
obj = handleResponse();
System.out.println("obj = " + obj);

// 3.2.set name 虎哥
sendRequest("mget", "name", "num", "msg");
// 4.解析响应
obj = handleResponse();
System.out.println("obj = " + obj);
} catch (IOException e) {
e.printStackTrace();
} finally {
// 5.释放连接
try {
if (reader != null) reader.close();
if (writer != null) writer.close();
if (s != null) s.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}

private static Object handleResponse() throws IOException {
// 读取首字节
int prefix = reader.read();
// 判断数据类型标示
switch (prefix) {
case '+': // 单行字符串,直接读一行
return reader.readLine();
case '-': // 异常,也读一行
throw new RuntimeException(reader.readLine());
case ':': // 数字
return Long.parseLong(reader.readLine());
case '$': // 多行字符串
// 先读长度
int len = Integer.parseInt(reader.readLine());
if (len == -1) {
return null;
}
if (len == 0) {
return "";
}
// 再读数据,读len个字节。我们假设没有特殊字符,所以读一行(简化)
return reader.readLine();
case '*':
return readBulkString();
default:
throw new RuntimeException("错误的数据格式!");
}
}

private static Object readBulkString() throws IOException {
// 获取数组大小
int len = Integer.parseInt(reader.readLine());
if (len <= 0) {
return null;
}
// 定义集合,接收多个元素
List<Object> list = new ArrayList<>(len);
// 遍历,依次读取每个元素
for (int i = 0; i < len; i++) {
list.add(handleResponse());
}
return list;
}

// set name 虎哥
private static void sendRequest(String ... args) {
writer.println("*" + args.length);
for (String arg : args) {
writer.println("$" + arg.getBytes(StandardCharsets.UTF_8).length);
writer.println(arg);
}
writer.flush();
}
}

4. Redis内存回收

Redis之所以性能强,最主要的原因就是基于内存存储。然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。
当内存使用达到上限时,就无法存储更多数据了。为了解决这个问题,Redis提供了一些策略实现内存回收:

  • 内存过期策略
  • 内存淘汰策略

4.1 内存过期策略

在学习Redis缓存的时候我们说过,可以通过expire命令给Redis的key设置TTL(存活时间):

  • 可以发现,当key的TTL到期以后,再次访问name返回的是nil,说明这个key已经不存在了,对应的内存也得到释放。从而起到内存回收的目的。

Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都保存在之前学习过的Dict结构中。不过在其database结构体中,有两个Dict:一个用来记录key-value;另一个用来记录key-TTL。

1
2
3
4
5
6
7
8
9
10
11
typedef struct redisDb {
    dict *dict;                 /* 存放所有key及value的地方,也被称为keyspace*/
    dict *expires;              /* 存放每一个key及其对应的TTL存活时间,只包含设置了TTL的key*/
    dict *blocking_keys;        /* Keys with clients waiting for data (BLPOP)*/
    dict *ready_keys;           /* Blocked keys that received a PUSH */
    dict *watched_keys;         /* WATCHED keys for MULTI/EXEC CAS */
    int id;                     /* Database ID,0~15 */
    long long avg_ttl;          /* 记录平均TTL时长 */
    unsigned long expires_cursor; /* expire检查时在dict中抽样的索引位置. */
    list *defrag_later;         /* 等待碎片整理的key列表. */
} redisDb;

Redis是如何知道一个key是否过期呢?

  • 利用两个Dict分别记录key-value对及key-ttl对

是不是TTL到期就立即删除了呢?

惰性删除
惰性删除:顾明思议并不是在TTL到期后就立刻删除,而是在访问一个key的时候,检查该key的存活时间,如果已经过期才执行删除。

周期删除
周期删除:顾明思议是通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。执行周期有两种:

  • Redis服务初始化函数initServer()中设置定时任务,按照server.hz的频率来执行过期key清理,模式为SLOW
  • Redis的每个事件循环前会调用beforeSleep()函数,执行过期key清理,模式为FAST

SLOW模式规则:

  • 执行频率受server.hz影响,默认为10,即每秒执行10次,每个执行周期100ms。
  • 执行清理耗时不超过一次执行周期的25%.默认slow模式耗时不超过25ms
  • 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
  • 如果没达到时间上限(25ms)并且过期key比例大于10%,再进行一次抽样,否则结束

FAST模式规则(过期key比例小于10%不执行 ):

  • 执行频率受beforeSleep()调用频率影响,但两次FAST模式间隔不低于2ms
  • 执行清理耗时不超过1ms
  • 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
    如果没达到时间上限(1ms)并且过期key比例大于10%,再进行一次抽样,否则结束

总结

RedisKey的TTL记录方式:

  • 在RedisDB中通过一个Dict记录每个Key的TTL时间

过期key的删除策略:

  • 惰性清理:每次查找key时判断是否过期,如果过期则删除
  • 定期清理:定期抽样部分key,判断是否过期,如果过期则删除。

定期清理的两种模式:

  • SLOW模式执行频率默认为10,每次不超过25ms
  • FAST模式执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms

4.2 内存淘汰策略

内存淘汰:就是当Redis内存使用达到设置的上限时,主动挑选部分key删除以释放更多内存的流程。
Redis会在处理客户端命令的方法processCommand()中尝试做内存淘汰

Redis支持8种不同策略来选择要删除的key:

  • noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。
  • volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
  • allkeys-random:对全体key ,随机进行淘汰。也就是直接从db->dict中随机挑选
  • volatile-random:对设置了TTL的key ,随机进行淘汰。也就是从db->expires中随机挑选。
  • allkeys-lru: 对全体key,基于LRU算法进行淘汰
  • volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
  • allkeys-lfu: 对全体key,基于LFU算法进行淘汰
  • volatile-lfu: 对设置了TTL的key,基于LFI算法进行淘汰

比较容易混淆的有两个:

  • LRU(Least Recently Used),最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
  • LFU(Least Frequently Used),最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。

Redis的数据都会被封装为RedisObject结构:

1
2
3
4
5
6
7
8
typedef struct redisObject {
    unsigned type:4;        // 对象类型
    unsigned encoding:4;    // 编码方式
    unsigned lru:LRU_BITS;  // LRU:以秒为单位记录最近一次访问时间,长度24bit
// LFU:高16位以分钟为单位记录最近一次访问时间,低8位记录逻辑访问次数
    int refcount;           // 引用计数,计数为0则可以回收
    void *ptr;              // 数据指针,指向真实数据
} robj;

LFU的访问次数之所以叫做逻辑访问次数,是因为并不是每次key被访问都计数,而是通过运算:

  • 生成0~1之间的随机数R
  • 计算 (旧次数 * lfu_log_factor + 1),记录为P
  • 如果 R < P ,则计数器 + 1,且最大不超过255
  • 访问次数会随时间衰减,距离上一次访问时间每隔 lfu_decay_time 分钟,计数器 -1




五. 黑马点评简历

项目亮点:

  1. 采用 Redis 对高频访问的商户信息进行缓存,降低了数据库查询的压力,解决了缓存穿透、雪崩、击穿问题
  2. 通过 ThreadLocal 保存已登录用户信息,请求处理完后移除,避免内存泄露与资源浪费
  3. 利用 Redisson 分布式锁解决集群环境下的并发安全问题,结合乐观锁机制防止秒杀超卖问题
  4. 基于 Redis 实现分布式 Session 共享,使用拦截器实现用户的登录校验和权限刷新
  5. 实现基于推模式的 Feed 流功能,采用滚动分页,用户发布笔记时实时推送至粉丝消息队列
  6. 借助 Redis 的 ZSet 实现点赞排行榜,利用 Set 数据结构支持用户关注与共同关注功能

项目亮点详解

1. 采用 Redis 对高频访问的商户信息进行缓存,降低了数据库查询的压力,解决了缓存穿透、雪崩、击穿问题

跳转到商户查询缓存这一节

1.1 缓存和内存的区别?

项目 缓存(Cache) 内存(Memory,也叫主存,RAM)
定义 CPU与内存之间的高速缓存,用于存放近期使用的热点数据 计算机的主内存,用于存储当前运行中的程序和数据
作用 提高CPU访问数据的速度,减少对内存的访问频率 提供运行程序时所需的数据空间
  • Redis 是一种常用的缓存技术:用来缓存热点数据、页面、Session 等,减轻数据库压力(基于内存,访问速度非常快)

1.2 使用Redis添加商户缓存的流程

  • 查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Override
public Result queryById(Long id) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 3.存在,直接返回
Shop shop = JSONUtil.toBean(shopJson, Shop.class);
return Result.ok(shop);
}
// 4.不存在,根据id查询数据库
Shop shop = getById(id);
// 5.不存在,返回错误
if (shop == null) {
return Result.fail("店铺不存在!");
}
//6.存在,写入redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop));
// 7.返回
return Result.ok(shop);
}

1.3 如何保证数据库和缓存的一致性?

跳转到缓存更新策略这一节

如果更新了数据库,导致数据库中的数据内容和当前缓存中保留的以前的内容不一致。如何保证一致性?

  • 数据库是新的,缓存是旧的 —— 数据脏读
  1. 先更新数据库
  2. 再删除缓存
  3. 下次请求读缓存 -> 发现没了 -> 读数据库 -> 再写入缓存

如何保证缓存与数据库的操作的同时成功或失败?

  • 单体系统,将缓存与数据库操作放在一个事务
  • 分布式系统,利用TCC等分布式事务方案

1.4 如何解决缓存穿透?

跳转到缓存穿透这一节

  • 缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库

常见的解决方案有两种:

  • 缓存空对象
  • 布隆过滤器

如何使用布隆过滤器解决缓存穿透问题?
用布隆过滤器提前记录 所有合法的 key(比如用户 ID、商品 ID)

  • 请求进来先查布隆过滤器
  • 如果布隆过滤器里都没有,那就直接拦截,不用查 Redis、数据库了。

布隆过滤器通过记录所有“合法 key”,在访问缓存前快速拦截掉非法请求,从而解决缓存穿透问题

布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,

假设布隆过滤器判断这个数据不存在,则直接返回

这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突

  • 有一定误判率:可能会误判为存在,但不会误判为不存在

1.5 如何解决缓存雪崩?

使用Caffeine+Redis实现应用级二层缓存

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  • 给不同的Key的TTL添加随机值(同一时段,给不同key设置不同的TTL)
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略(微服务)
  • 给业务添加多级缓存

这里我采用多级缓存的方式解决缓存雪崩问题
多级缓存 = 本地缓存(如 Caffeine) + 分布式缓存(如 Redis)

使用流程大致如下:

  1. 首先从一级缓存(caffeine-本地应用内)中查找数据;
  2. 如果没有的话,则从二级缓存(redis-内存)中查找数据;
  3. 如果还是没有的话,再从数据库(数据库-磁盘)中查找数据;

1.6 如何解决缓存击穿?

某个热点 key 在瞬间失效,大量并发请求同时访问这个 key,缓存没命中,导致并发打到数据库。

跳转到缓存击穿这一节

这里我用的是互斥锁的方式解决缓存击穿

常见的解决方案有:

  • 互斥锁: 当缓存失效时,第一个线程获取锁并查询数据库,其它线程等待。
  • 设置永不过期 + 后台定时异步更新缓存(当热点key的数量少,占用内存少的时候)
  • 逻辑过期

设置永不过期 + 后台定时异步更新缓存

  • 你不让缓存自然过期,而是用 主动刷新 来维持数据一致性
  • 不会失效,自然也不会击穿

逻辑过期

  • 我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理
  • 假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞
  • 获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回
  • 假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据
  • 只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。

2. 通过 ThreadLocal 保存已登录用户信息,请求处理完后移除,避免内存泄露与资源浪费

2.1 为什么不使用session存储用户信息,而是使用ThreadLocal存放用户信息?

  1. Session 依赖服务端状态,不适合分布式场景(Session共享问题)
    • HttpSession 是服务端状态,会话信息默认保存在服务端内存中(如 Tomcat 内部)。
    • 分布式部署时,如果没有做 Session 共享(如使用 Redis Session),用户可能每次请求会打到不同的服务节点,导致 Session 丢失
  2. 如果遇到高并发,多人同时登录系统时,会出现session混乱
  3. ThreadLocal 为每个线程维护一个独立副本,天然线程隔离,避免并发访问带来的数据安全问题
  4. 我们可以借助这个ThreadLocal来存储登录用户的信息,在一个请求中,所有调用的方法都在同一个线程中去处理,这样就实现了在任何地方都可以获取到用户信息了。
  5. 放到 ThreadLocal 就可以不用每次都查 Redis。如果你把这个 UserDTO 存到 ThreadLocal 中,那么在这一请求生命周期内,后续任何地方就可以直接从 ThreadLocal 取出用户信息,而不用重复从 Redis 查询或多层传参。

2.2 完整的用户登录 + 拦截器鉴权 + ThreadLocal 用户上下文管理

1
2
3
4
5
6
7
8
9
10
11
├── config
│ └── LoginInterceptor.java // 登录拦截器
├── dto
│ └── UserDTO.java // 登录用户信息简化封装
├── utils
│ └── UserHolder.java // ThreadLocal 用户上下文管理
├── controller
│ └── UserController.java // 登录相关接口
├── service
│ └── UserService.java // 登录逻辑(含Redis token校验)
└── ...
  1. 定义用户实体:UserDTO(用于存储登录用户的简化信息)
  2. 定义工具类UserHolder操作ThreadLocal(存放,获取,删除用户信息)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class UserHolder {
private static final ThreadLocal<UserDTO> tl = new ThreadLocal<>();

//保存用户信息
public static void saveUser(UserDTO user){
tl.set(user);
}

//获取用户信息
public static UserDTO getUser(){
return tl.get();
}

//删除用户信息
public static void removeUser(){
tl.remove();
}
}
  1. 登录拦截器:判断是否需要拦截(ThreadLocal中是否有用户)
    • 访问接口时将用户信息放入ThreadLocal
    • 访问结束时候删除ThreadLocal中信息(线程放入线程池并不一定会销毁)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class LoginInterceptor implements HandlerInterceptor {

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
// 1.判断是否需要拦截(ThreadLocal中是否有用户)
if (UserHolder.getUser() == null) {
// 没有,需要拦截,设置状态码
response.setStatus(401);
// 拦截
return false;
}
// 有用户,则放行
return true;
}
}
  1. 配置拦截器,让拦截器生效(拦截需要登录的接口)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
@Configuration
public class WebMvcConfig implements WebMvcConfigurer {

@Autowired
private LoginInterceptor loginInterceptor;

@Override
public void addInterceptors(InterceptorRegistry registry) {
// 拦截需要登录的接口
registry.addInterceptor(loginInterceptor)
.addPathPatterns("/**") // 可细化路径
.excludePathPatterns("/user/login", "/user/register", "/static/**");
}
}

2.3 为什么请求处理完后要移除 ThreadLocal 的值?

目的:避免内存泄漏与资源浪费

原因

  1. ThreadLocalMap 的 key 是弱引用,value 是强引用
    • 当 ThreadLocal 实例(key)被 GC 回收后,如果没有手动 remove(),它对应的 value 会“悬挂”在内存中,而 ThreadLocalMap 是挂在 Thread 对象上的,线程不死,value 就不会释放,造成内存泄漏
  2. 线程池复用线程:线程池导致线程长期存活,加剧泄漏问题
    • 如果你在线程中使用了 ThreadLocal 但没调用 remove(),上一个请求的数据就可能被下一个请求复用的线程误用,造成数据泄漏和安全风险。
  • ThreadLocal 的 key 是弱引用,若不及时调用 remove() 清除绑定数据,可能因线程池复用导致内存泄漏与用户数据错乱,尤其在高并发系统中危害更明显。

2.4 ThreadLocal原理(重点)

ThreadLocal原理

3. 利用 Redisson 分布式锁解决集群环境下的并发安全问题,结合乐观锁机制防止秒杀超卖问题

3.1 什么是集群环境下的并发安全问题?

跳转到集群环境下一人一单的并发安全问题

  • 一人一单:秒杀业务要求同一个优惠券,一个用户只能下一单
  • 集群环境下的一人一单
    • 通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了
    • 每个tomcat都有一个属于自己的jvm每个JVM都有各自的锁监视器,导致不同JVM的锁在不同的锁监视器中
    • 在集群模式下,加锁只是对该 JVM 给当前这台服务器的请求的加锁,而集群是多台服务器,所以要使用分布式锁,满足集群模式下多进程可见并且互斥的锁。

3.2 什么是分布式锁?

跳转到分布式锁

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁

  • 分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

3.3 Redisson分布式锁的原理和使用

跳转到Redisson分布式锁

Redisson 是一个 Java 客户端框架,基于 Redis 实现了分布式锁、分布式集合、分布式对象等高阶功能

Redisson 分布式锁的原理:

  1. 加锁原理:Redisson 使用 Redis 的 SET key value NX PX 命令加锁
    • key 是锁名,value 是唯一标识(UUID+线程ID)
    • 设置 30 秒过期时间(默认值,可配置)
  2. 看门狗机制(Watchdog)
    • 如果使用 lock() 加锁(不带超时时间),Redisson 会启动一个后台定时任务,每隔 10 秒自动续期,将锁的过期时间续为 30 秒;
    • 如果你主动设置了锁的过期时间,比如 lock(10, TimeUnit.SECONDS),则不会自动续期,10 秒后自动释放;
  3. 解锁原理
    • Redisson 会验证当前线程是否是锁的拥有者(根据 UUID+线程ID 判断)
    • 是的话执行 Lua 脚本删除锁,防止误删其他线程的锁(原子操作)
  4. 支持多种模式
    • 公平锁:排队机制,先来先得(适用于高并发下公平访问资源的场景)
    • 可重入锁:同一个线程可以多次获取同一把锁

使用Redission的分布式锁:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Resource
private RedissionClient redissonClient;

@Test
void testRedisson() throws Exception{
//获取锁(可重入),指定锁的名称
RLock lock = redissonClient.getLock("anyLock");
//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
//判断获取锁成功
if(isLock){
try{
System.out.println("执行业务");
}finally{
//释放锁
lock.unlock();
}

}
}

3.4 为什么会出现超卖?

主要是在高并发场景下并发控制不当造成的,下面是一个典型流程:

  1. 多个用户同时查询库存(比如查到当前库存为 5)
  2. 多个用户几乎同时发起下单请求
  3. 系统来不及“同步更新”库存,导致多个请求都成功了 ➜ 库存变负数
    卖出去的数量超过了实际库存

3.5 什么是乐观锁?

悲观锁:

  • 认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行。
  • 例如Synchronized、Lock都属于悲观锁

乐观锁(CAS):

  • 认为线程安全问题不一定会发生,因此不加锁,只是在更新数据时去判断有没有其它线程对数据做了修改
  • 如果没有修改则认为是安全的,自己才更新数据。
  • 如果已经被其它线程修改说明发生了安全问题,此时可以重试或异常

3.6 如何使用乐观锁(CAS)解决超卖问题?

跳转到乐观锁解决方案

只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的
我们的乐观锁需要变一下,改成stock大于0 即可

  • 只要库存大于0,就可以买,不会超卖
1
2
3
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0

4. 使用 Redis 解决了在集群模式下的 Session 共享问题,使用拦截器实现用户的登录校验和权限刷新

黑马点评重点面试问题

4.1 什么是Session共享问题?

跳转到session共享问题

多台 Tomct 并不共享 session 存储空间,当请求切换到不同 tomcat 服务时导致数据丢失的问题。

每个tomcat中都有一份属于自己的session,假设用户第一次访问第一台tomcat,并且把自己的信息存放到第一台服务器的session中,但是第二次这个用户访问到了第二台tomcat,那么在第二台服务器上,肯定没有第一台服务器存放的session,所以此时 整个登录拦截功能就会出现问题

我们能如何解决这个问题呢?早期的方案是session拷贝,就是说虽然每个tomcat上都有不同的session,但是每当任意一台服务器的session修改时,都会同步给其他的Tomcat服务器的session,这样的话,就可以实现session的共享了

后来采用的方案都是基于redis来完成,我们把session换成redisredis数据本身就是共享的,就可以避免session共享的问题了

4.2 如何在登录过程中用Redis代替Session的?

跳转到Redis代替session的业务流程

登录流程:

  1. 发送短信验证码:将验证码保存到Redis里面,而不是session
  2. 登录过程:根据手机号查询用户信息,不存在则新建,最后将用户数据保存到redis(作为值),并且生成token作为redis的key
  3. 校验登录状态:当我们校验用户是否登录时,会去携带着token进行访问,从redis中取出token对应的value,判断是否存在这个数据,如果没有则拦截,如果存在则将其保存到threadLocal中,并且放行。

4.3 还有其他解决方法吗?

  • 基于 Cookie 的 Token 机制,不再使用服务器端保存 Session,而是通过客户端保存 Token(如 JWT)。
  • Token 包含用户的认证信息(如用户 ID、权限等),并通过签名验证其完整性和真实性。
  • 每次请求,客户端将 Token 放在 Cookie 或 HTTP 头中发送到服务,进行验证

4.4 如何使用拦截器实现用户的登录校验和权限刷新?

跳转到拦截器

问题所在:

  • 原始方案确实可以使用对应路径的拦截,同时刷新登录token令牌的存活时间,但是现在这个拦截器他只是拦截需要被拦截的路径
  • 假设当前用户访问了一些不需要拦截的路径,那么这个拦截器就不会生效,所以此时令牌刷新的动作实际上就不会执行,所以这个方案他是存在问题的

实现方案:

  • 我们可以添加一个拦截器
  1. 第一个拦截器中拦截所有的路径,把第二个拦截器做的事情放入到第一个拦截器中,同时刷新令牌
  2. 因为第一个拦截器有了ThreadLocal的数据,所以此时第二个拦截器只需要判断拦截器中的user对象是否存在即可,完成整体刷新功能。
  • 第一层拦截器是做全局处理,例如获取 Token,查询 Redis 中的用户信息,刷新 Token 有效期等通用操作。
  • 第二层拦截器专注于验证用户登录的逻辑,如果路径需要登录,但用户未登录,则直接拦截请求。作用是拦截未登录的用户

好处:

  • 职责分离:这种分层设计让每个拦截器的职责更加单一,代码更加清晰、易于维护
  • 提升性能

5. 实现基于推模式的 Feed 流功能,采用滚动分页,用户发布笔记时实时推送至粉丝消息队列

跳转到共同推送-Feeed流实现方案

5.1 什么是推模式的Feed流?

  • 关注推送也叫做Feed流,直译为投喂。为用户持续的提供“沉浸式”的体验,通过无限下拉刷新获取新的信息

Feed流产品有两种常见模式

  • Timeline:不做内容筛选,简单的按照内容发布时间排序,常用于好友或关注。例如朋友圈
  • 智能排序:利用智能算法屏蔽掉违规的、用户不感兴趣的内容。推送用户感兴趣信息来吸引用户(抖音)

Timeline的三种模式
跳转到共同推送查看

  • 拉模式
  • 推模式:也叫写扩散
  • 推拉结合

推模式的Feed流

  • 当张三写了一个内容,此时会主动的把张三写的内容发送到他的粉丝收件箱中去,假设此时李四再来读取,就不用再去临时拉取了(像朋友圈的方式)
  • 用户发布笔记时实时推送至粉丝消息队列

5.2 为什么要使用滚动分页?

Feed流中的数据会不断更新,所以数据的角标也在变化,因此不能采用传统的分页模式。

  • 如何实现Feed流的分页功能是一个复杂的问题,如果采用MyBatis中的分页插件是不能满足分页功能的,因为Feed流是一个动态的,数据会不断更新,因此数据的角标会不停更新,当我们需要查询第5-10条的数据时,可能又保存了一个新的数据到数据库,从而导致我们分页查找的数据存在与上一次查询的数据重复的问题

5.3 如何实现滚动分页?

滚动分页就是每次查询过数据库后,我们需要记录这一次查询结果的最后一条数据,下一次查询时,从这个位置开始去读取数据

  1. 每次查询完成后,我们要分析出查询出数据的最小时间戳,这个值会作为下一次查询的条件
  2. 我们需要找到与上一次查询相同的查询个数作为偏移量,下次查询时,跳过这些查询过的数据,拿到我们需要的数据
  • 综上:我们的请求参数中就需要携带 lastId:上一次查询的最小时间戳偏移量这两个参数

6. 借助 Redis 的 ZSet 实现点赞排行榜,利用 Set 数据结构支持用户关注与共同关注功能

6.1 为什么使用ZSet实现点赞排行榜?

跳转到点赞排行榜

在探店笔记的详情页面,应该把给该笔记点赞的人显示出来,比如最早点赞的TOP5,形成点赞排行榜

  • 点赞功能:使用set集合,因为点赞是不能重复的
  • 点赞排行榜功能:使用sortedSet(ZSet),因为需要采用一个可以排序的set集合

ZSet:保存用户ID为键,用户点赞时间作为score进行排序

1
stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());

查询top5的点赞用户: zrange key 0 4

6.2 如何利用Set实现用户关注和共同关注?

跳转到关注和共同关注

用户关注:是User之间的关系,是博主与粉丝的关系,数据库中有一张tb_follow表来表示

  • 表的主键是当前用户ID,有一个FollowedID表示关注的用户ID

共同关注:在博主个人页面展示出当前用户与博主的共同关注呢

  • 使用set集合,在set集合中,有交集并集补集的api
  • 我们可以把两人的关注的人分别放入到一个set集合中,然后再通过api去查看这两个set集合中的交集数据。

6.3 介绍Set数据结构和底层原理

跳转到Set数据结构

跳转到ZSet数据结构

跳转到Set数据结构底层原理

跳转到ZSet数据结构底层原理

END